OFFSET
1,9
COMMENTS
Conjecture: a(n) > 0 for all n > 5.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Sep 22 2023
This implies that there are infinitely many twin prime pairs of the form {x^2 + x - 1, x^2 + x + 1}.
See also A230514 for a similar conjecture.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(8) = 1 since 8 = 2 + 3 + 3, and {2*3 - 1, 2*3 + 1} = {5, 7} and {3*4 - 1, 3*4 + 1} = {11, 13} are twin prime pairs.
a(39) = 1 since 39 = 3 + 15 + 21, and {3*4 - 1, 3*4 + 1} = {11, 13}, {15*16 - 1, 15*16 + 1} = {239, 241}, {21*22 - 1, 21*22 + 1} = {461, 463} are twin prime pairs.
MATHEMATICA
pp[n_]:=PrimeQ[n(n+1)-1]&&PrimeQ[n(n+1)+1]
a[n_]:=Sum[If[pp[i]&&pp[j]&&pp[n-i-j], 1, 0], {i, 1, n/3}, {j, i, (n-i)/2}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 22 2013
STATUS
approved