login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230514
Number of ways to write n = a + b + c (0 < a <= b <= c) such that all the three numbers a*(a+1)-1, b*(b+1)-1, c*(c+1)-1 are Sophie Germain primes.
3
0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 3, 4, 3, 4, 4, 4, 3, 5, 4, 4, 4, 5, 4, 4, 2, 4, 4, 4, 2, 3, 2, 3, 2, 1, 2, 2, 3, 3, 3, 4, 5, 3, 2, 5, 6, 5, 5, 6, 5, 7, 9, 6, 7, 9, 9, 8, 10, 8, 8, 10, 7, 8, 10, 6, 9, 8, 6, 5, 8, 4, 7, 4, 4, 8, 7, 5, 3, 5, 3, 7, 3, 3, 5, 7, 5, 4, 6, 5, 6, 7, 5, 6, 10, 9, 6
OFFSET
1,9
COMMENTS
Conjecture: a(n) > 0 for all n > 5.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Sep 22 2023
This implies that there are infinitely many Sophie Germain primes of the form x^2 + x - 1.
See also A230516 for a similar conjecture.
LINKS
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(10) = 2 since 10 = 2 + 2 + 6 = 2 + 3 + 5, and 2*3 - 1 = 5, 6*7 - 1 = 41, 3*4 - 1 = 11, 5*6 - 1 = 29 are all Sophie Germain primes.
a(39) = 1 since 39 = 9 + 15 + 15, and both 9*10 - 1 = 89 and 15*16 - 1 = 239 are Sophie Germain primes.
MATHEMATICA
pp[n_]:=PrimeQ[n(n+1)-1]&&PrimeQ[2n(n+1)-1]
a[n_]:=Sum[If[pp[i]&&pp[j]&&pp[n-i-j], 1, 0], {i, 1, n/3}, {j, i, (n-i)/2}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 21 2013
STATUS
approved