OFFSET
1,2
COMMENTS
AGM(a, b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0 = a, b_0 = b, a_{n+1} = (a_n+b_n)/2, b_{n+1} = sqrt(a_n*b_n).
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, page 5.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
EXAMPLE
1.5691058028693223269851954560782561673139452000901737963168461903...
MAPLE
evalf(GaussAGM(sqrt(2), sqrt(3)), 120); # Muniru A Asiru, Oct 06 2018
MATHEMATICA
RealDigits[ ArithmeticGeometricMean[ Sqrt[2], Sqrt[3]], 10, 105][[1]]
PROG
(PARI) agm(sqrt(2), sqrt(3)) \\ Charles R Greathouse IV, Mar 03 2016
CROSSREFS
KEYWORD
AUTHOR
Robert G. Wilson v, Oct 19 2013
STATUS
approved