The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230461 Decimal expansion of AGM(sqrt(2), sqrt(3)). 1
 1, 5, 6, 9, 1, 0, 5, 8, 0, 2, 8, 6, 9, 3, 2, 2, 3, 2, 6, 9, 8, 5, 1, 9, 5, 4, 5, 6, 0, 7, 8, 2, 5, 6, 1, 6, 7, 3, 1, 3, 9, 4, 5, 2, 0, 0, 0, 9, 0, 1, 7, 3, 7, 9, 6, 3, 1, 6, 8, 4, 6, 1, 9, 0, 3, 4, 2, 3, 2, 1, 6, 2, 8, 3, 2, 1, 4, 8, 9, 5, 8, 5, 2, 4, 1, 4, 4, 9, 8, 0, 5, 5, 7, 9, 0, 6, 3, 9, 0, 3, 4, 1, 0, 7, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS AGM(a, b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0 = a, b_0 = b, a_{n+1} = (a_n+b_n)/2, b_{n+1} = sqrt(a_n*b_n). REFERENCES J. M. Borwein and P. B. Borwein, Pi and the AGM, page 5. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE 1.5691058028693223269851954560782561673139452000901737963168461903... MAPLE evalf(GaussAGM(sqrt(2), sqrt(3)), 120); # Muniru A Asiru, Oct 06 2018 MATHEMATICA RealDigits[ ArithmeticGeometricMean[ Sqrt[2], Sqrt[3]], 10, 105][[1]] PROG (PARI) agm(sqrt(2), sqrt(3)) \\ Charles R Greathouse IV, Mar 03 2016 CROSSREFS Cf. A014549, A053003. Cf. A002193 (sqrt(2)), A002194 (sqrt(3)). Sequence in context: A172997 A244274 A279664 * A277522 A019598 A340565 Adjacent sequences:  A230458 A230459 A230460 * A230462 A230463 A230464 KEYWORD nonn,cons,easy AUTHOR Robert G. Wilson v, Oct 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 00:32 EDT 2022. Contains 356026 sequences. (Running on oeis4.)