login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230307
a(n) = 139*n^2 - 2307*n + 3331.
1
3331, 1163, -727, -2339, -3673, -4729, -5507, -6007, -6229, -6173, -5839, -5227, -4337, -3169, -1723, 1, 2003, 4283, 6841, 9677, 12791, 16183, 19853, 23801, 28027, 32531, 37313, 42373, 47711, 53327, 59221, 65393, 71843, 78571, 85577, 92861, 100423, 108263
OFFSET
0,1
COMMENTS
|a(n)| are distinct noncomposite numbers for n = 0 to 35.
The values of this polynomial are never divisible by a prime less than 53.
FORMULA
G.f.: (3331 - 8830*x + 5777*x^2)/(1 - x)^3.
MAPLE
seq(139*n^2-2307*n+3331, n=0..37);
MATHEMATICA
Table[139*n^2 - 2307*n + 3331, {n, 0, 37}]
LinearRecurrence[{3, -3, 1}, {3331, 1163, -727}, 40] (* or *) CoefficientList[ Series[(3331-8830x+5777x^2)/(1-x)^3, {x, 0, 40}], x] (* Harvey P. Dale, Jul 06 2021 *)
PROG
(Magma) [139*n^2-2307*n+3331 : n in [0..37]];
(PARI) for(n=0, 37, print1(139*n^2-2307*n+3331, ", "));
CROSSREFS
Sequence in context: A253865 A253538 A147881 * A043504 A251331 A261656
KEYWORD
sign,easy
AUTHOR
STATUS
approved