login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 139*n^2 - 2307*n + 3331.
1

%I #37 Sep 08 2022 08:46:06

%S 3331,1163,-727,-2339,-3673,-4729,-5507,-6007,-6229,-6173,-5839,-5227,

%T -4337,-3169,-1723,1,2003,4283,6841,9677,12791,16183,19853,23801,

%U 28027,32531,37313,42373,47711,53327,59221,65393,71843,78571,85577,92861,100423,108263

%N a(n) = 139*n^2 - 2307*n + 3331.

%C |a(n)| are distinct noncomposite numbers for n = 0 to 35.

%C The values of this polynomial are never divisible by a prime less than 53.

%H Arkadiusz Wesolowski, <a href="/A230307/b230307.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: (3331 - 8830*x + 5777*x^2)/(1 - x)^3.

%p seq(139*n^2-2307*n+3331, n=0..37);

%t Table[139*n^2 - 2307*n + 3331, {n, 0, 37}]

%t LinearRecurrence[{3,-3,1},{3331,1163,-727},40] (* or *) CoefficientList[ Series[(3331-8830x+5777x^2)/(1-x)^3,{x,0,40}],x] (* _Harvey P. Dale_, Jul 06 2021 *)

%o (Magma) [139*n^2-2307*n+3331 : n in [0..37]];

%o (PARI) for(n=0, 37, print1(139*n^2-2307*n+3331, ", "));

%K sign,easy

%O 0,1

%A _Arkadiusz Wesolowski_, Oct 29 2013