login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230308
Numbers k such that the sum over the k-th powers of all Gaussian integers in the k X k base square in the first quadrant is == 0 (mod k).
8
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
OFFSET
1,1
COMMENTS
Define S(k) = Sum_{0<=a<k, 0<=b<k} (a+b*i)^k, where i is the imaginary unit, which yields S(k) mod k = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8,.. for k>=1. Then this sequence contains all places k such that S(k) == 0 (mod k).
The asymptotic density of this sequence is 0.971000... (Fortuny Ayuso et al., 2014). - Amiram Eldar, May 01 2021
LINKS
Pedro Fortuny Ayuso, Jose Maria Grau and Antonio Oller-Marcen, A von Staudt-type formula for Sum_{z in Zn[i]} z^k, arXiv:1402.0333 [math.NT], 2014.
MATHEMATICA
aa[n_] := aa[n] = Mod[Sum[PowerMod[a + b I, n, n], {a, n}, {b, n}], n]; Select[Range[100], aa[#] == 0 &]
CROSSREFS
The complement of A230761.
Sequence in context: A135382 A351831 A328617 * A357875 A064598 A366187
KEYWORD
nonn
AUTHOR
STATUS
approved