login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229970
Numbers n such that the product of their proper divisors is a palindrome > 1 and not equal to n.
2
4, 9, 25, 49, 121, 212, 1001, 2636, 10201, 17161, 22801, 32761, 36481, 97969, 110011, 124609, 139129, 146689, 528529, 573049, 619369, 635209, 844561, 863041, 1100011, 10100101, 11000011, 101000101, 106110601, 110000011, 110271001, 112381201, 127938721, 130210921
OFFSET
1,1
COMMENTS
Since the product of proper divisors must be > 1, these terms are necessarily composite. - Derek Orr, Apr 05 2015
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..62
EXAMPLE
The product of the proper divisors of 2636 is 6948496 (a palindrome). So, 2636 is a member of this sequence.
The product of the proper divisors of 8 is 8 (a palindrome) but equal to 8. So 8 is not in this sequence.
MAPLE
isA002113 := proc(n)
dgs := convert(n, base, 10) ;
for i from 1 to nops(dgs)/2 do
if op(i, dgs) <> op(-i, dgs) then
return false;
end if;
end do:
true ;
end proc:
for n from 4 do
if not isprime(n) then
ppd := A007956(n) ;
if n <> ppd and isA002113(ppd) then
printf("%d, ", n);
end if;
end if;
end do: # R. J. Mathar, Oct 09 2013
MATHEMATICA
palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; fQ[n_] := Block[{s = Times @@ Most@ Divisors@ n}, And[palQ@s, s > 1, s != n]]; Select[Range@ 1000000, CompositeQ@ # && fQ@ # &] (* Michael De Vlieger, Apr 06 2015 *)
PROG
(Python)
from sympy import divisors
def PD(n):
p = 1
for i in divisors(n):
if i != n:
p *= i
return p
def pal(n):
r = ''
for i in str(n):
r = i + r
return r == str(n)
{print(n, end=', ') for n in range(1, 10**4) if pal(PD(n)) and (PD(n)-1) and PD(n)-n}
## Simplified by Derek Orr, Apr 05 2015
(PARI) ispal(n)=Vecrev(n=digits(n))==n
is(n)=my(k=if(issquare(n, &k), k^numdiv(n)/n, n^(numdiv(n)/2-1))); k!=n && k>1 && ispal(k) \\ Charles R Greathouse IV, Oct 09 2013
(PARI) pal(n)=d=digits(n); Vecrev(d)==d
for(n=1, 10^6, D=divisors(n); p=prod(i=1, #D-1, D[i]); if(pal(p)&&p-1&&p-n, print1(n, ", "))) \\ Derek Orr, Apr 05 2015
CROSSREFS
Cf. A007956.
Sequence in context: A052043 A188836 A030146 * A038771 A158146 A158147
KEYWORD
nonn,base
AUTHOR
Derek Orr, Oct 04 2013
EXTENSIONS
a(14)-a(18) from R. J. Mathar, Oct 09 2013
a(19)-a(34) from Charles R Greathouse IV, Oct 09 2013
Definition edited by Derek Orr, Apr 05 2015
STATUS
approved