OFFSET
1,10
COMMENTS
Conjecture: a(n) > 0 for all n > 5. Moreover, any integer n > 6 can be written as x + y + z with x among 3, 4, 6, 10, 15 such that 2*y-1, 2*z-1, 2*x*y-1, 2*x*z-1, 2*y*z-1 are prime.
We have verified this conjecture for n up to 10^6. As (2*x-1)+(2*y-1)+(2*z-1) = 2*(x+y+z)-3, it implies Goldbach's weak conjecture which has been proved.
Zhi-Wei Sun also had some similar conjectures including the following (i)-(iii):
(i) Any integer n > 6 can be written as x + y + z (x, y, z > 0) with 2*x-1, 2*y-1, 2*z-1 and 2*x*y*z-1 all prime and x among 2, 3, 4. Also, each integer n > 2 can be written as x + y + z (x, y, z > 0) with 2*x+1, 2*y+1, 2*z+1 and 2*x*y*z+1 all prime and x among 1, 2, 3.
(ii) Each integer n > 4 can be written as x + y + z with x = 3 or 6 such that 2*y+1, 2*x*y*z-1 and 2*x*y*z+1 are prime.
(iii) Every integer n > 5 can be written as x + y + z (x, y, z > 0) with x*y-1, x*z-1, y*z-1 all prime and x among 2, 6, 10. Also, any integer n > 2 not equal to 16 can be written as x + y + z (x, y, z > 0) with x*y+1, x*z+1, y*z+1 all prime and x among 1, 2, 6.
See also A229974 for a similar conjecture involving three pairs of twin primes.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588.
EXAMPLE
a(10) = 2 since 10 = 2+2+6 = 3+3+4 with 2*2-1, 2*6-1, 2*2*2-1, 2*2*6 -1, 2*3-1, 2*4-1, 2*3*3-1, 2*3*4-1 all prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[2i-1]&&PrimeQ[2j-1]&&PrimeQ[2(n-i-j)-1]&&PrimeQ[2i*j-1]&&PrimeQ[2i(n-i-j)-1]&&PrimeQ[2j(n-i-j)-1], 1, 0], {i, 1, n/3}, {j, i, (n-i)/2}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 04 2013
STATUS
approved