login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229969
Number of ways to write n = x + y + z with 0 < x <= y <= z such that all the six numbers 2*x-1, 2*y-1, 2*z-1, 2*x*y-1, 2*x*z-1, 2*y*z-1 are prime.
5
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 2, 7, 4, 3, 5, 3, 2, 6, 3, 4, 3, 4, 5, 3, 4, 6, 6, 3, 5, 4, 5, 6, 9, 4, 8, 4, 7, 10, 2, 6, 12, 9, 1, 7, 7, 6, 12, 10, 3, 7, 8, 8, 9, 9, 5, 3, 7, 3, 7, 3, 9, 10, 8, 6, 11, 11, 13, 15, 6, 6, 10, 15, 11, 11, 13, 8, 12, 12, 7, 10, 8, 13, 12
OFFSET
1,10
COMMENTS
Conjecture: a(n) > 0 for all n > 5. Moreover, any integer n > 6 can be written as x + y + z with x among 3, 4, 6, 10, 15 such that 2*y-1, 2*z-1, 2*x*y-1, 2*x*z-1, 2*y*z-1 are prime.
We have verified this conjecture for n up to 10^6. As (2*x-1)+(2*y-1)+(2*z-1) = 2*(x+y+z)-3, it implies Goldbach's weak conjecture which has been proved.
Zhi-Wei Sun also had some similar conjectures including the following (i)-(iii):
(i) Any integer n > 6 can be written as x + y + z (x, y, z > 0) with 2*x-1, 2*y-1, 2*z-1 and 2*x*y*z-1 all prime and x among 2, 3, 4. Also, each integer n > 2 can be written as x + y + z (x, y, z > 0) with 2*x+1, 2*y+1, 2*z+1 and 2*x*y*z+1 all prime and x among 1, 2, 3.
(ii) Each integer n > 4 can be written as x + y + z with x = 3 or 6 such that 2*y+1, 2*x*y*z-1 and 2*x*y*z+1 are prime.
(iii) Every integer n > 5 can be written as x + y + z (x, y, z > 0) with x*y-1, x*z-1, y*z-1 all prime and x among 2, 6, 10. Also, any integer n > 2 not equal to 16 can be written as x + y + z (x, y, z > 0) with x*y+1, x*z+1, y*z+1 all prime and x among 1, 2, 6.
See also A229974 for a similar conjecture involving three pairs of twin primes.
LINKS
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588.
EXAMPLE
a(10) = 2 since 10 = 2+2+6 = 3+3+4 with 2*2-1, 2*6-1, 2*2*2-1, 2*2*6 -1, 2*3-1, 2*4-1, 2*3*3-1, 2*3*4-1 all prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[2i-1]&&PrimeQ[2j-1]&&PrimeQ[2(n-i-j)-1]&&PrimeQ[2i*j-1]&&PrimeQ[2i(n-i-j)-1]&&PrimeQ[2j(n-i-j)-1], 1, 0], {i, 1, n/3}, {j, i, (n-i)/2}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 04 2013
STATUS
approved