login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A229960
Primes of the form n^3 - T(n) - 1 where T(n) is the n-th triangular number.
1
53, 109, 683, 4759, 7789, 9029, 13523, 15299, 45989, 63179, 68059, 90089, 116423, 174019, 225089, 370619, 610469, 700963, 994949, 1025149, 1119403, 1398599, 1594709, 1898873, 2291189, 2561899, 2734129, 2975543, 3038039, 3296773, 3784169, 3857489, 5913269, 6212483
OFFSET
1,1
COMMENTS
Also primes of the form (2*n^3 - n^2 - n - 2)/2.
LINKS
EXAMPLE
a(2) = 109 since 5^3 - T(5) - 1 = 125 - 15 - 1 = 109, which is prime.
a(6) = 9029 since 21^3 - T(21) - 1 = 9261 - 231 - 1 = 9029 which is prime.
MAPLE
KD:= proc() local a, b, d; a:= n^3; b:=(1/2)*n*(n+1); d:=a-b-1; if isprime(d) then RETURN(d): fi; end: seq(KD(), n=1..500);
MATHEMATICA
Select[Table[(n^3) - (n/2*(n + 1)) - 1, {n, 200}], PrimeQ]
CROSSREFS
Sequence in context: A141965 A141975 A142663 * A107155 A139504 A142798
KEYWORD
nonn,less
AUTHOR
K. D. Bajpai, Oct 04 2013
STATUS
approved