login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229957
a(n) is the number m such that f(sqrt(n)) is in the field Q(sqrt(m)), where f(x) is defined from the continued fraction x = [c(0), c(1), ... ] as [c(0) + 1, c(1) + 1, ...].
4
1, 13, 15, 1, 29, 285, 34, 35, 1, 53, 14, 21, 51533, 62, 7, 1, 85, 5, 1299599, 93, 17765, 16445, 2, 11, 1, 5, 1155, 1610, 112897, 1221, 85183670, 35, 141, 142, 143, 1, 173, 8645, 4485, 182, 185, 1677, 1580795, 101177, 235613, 8647745897021, 194, 195, 1, 229
OFFSET
1,2
EXAMPLE
f(sqrt(2)) = f([1,2,2,...]) = [2,3,3,...] = (1 + sqrt(13)/2, so a(2) = 13.
MATHEMATICA
$MaxExtraPrecision = Infinity;
c[x_] := c[x] = FromContinuedFraction[ContinuedFraction[x] + 1]
Table[c[Sqrt[n]], {n, 1, 30}]
f[y_] := Cases[y, x_^(1/2 | -1/2) :> x, Infinity];
t = Table[f[c[Sqrt[n]]], {n, 1, 80}]; Flatten[t /. {} -> 1] (*A229957*)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 04 2013
STATUS
approved