login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229181
Number of decimal digits in the variant of A047777(n) (decimal expansion of Pi cut in "prime chunks") without the restriction that all primes must be different.
3
1, 5, 1, 3, 1, 2, 1, 4, 3057, 1, 1, 3, 1, 1, 748, 2, 2, 1, 2, 83, 5, 1, 2, 71, 10, 1, 1, 2, 2, 2, 1, 1, 3, 1, 14, 2, 5, 51, 1, 6, 1, 6, 3, 2, 9, 1, 16, 2, 3, 43, 1, 6, 19, 1, 5, 3, 1999, 1, 1, 2, 22, 1, 3, 1, 2, 2, 1, 2, 2, 5, 1, 1, 1, 1, 4, 1, 1, 3, 7, 5, 1, 6, 4, 3, 1, 10, 7, 1, 2, 11, 2, 5, 1, 13, 1, 20, 16, 1, 9, 16
OFFSET
1,2
COMMENTS
A variant of A121267. First differences of A053013. See these two sequences for further details.
MATHEMATICA
A229181 = {1}; digits = Join[{{1}}, RealDigits[Pi, 10, 10^4] // First // Rest]; digits //. {a:({_Integer..}..), b__Integer /; PrimeQ[FromDigits[{b}]], c___Integer} :> (Print[lg = {b} // Length]; AppendTo[A229181, lg]; {{1}, c}) ; A229181 (* Jean-François Alcover, Oct 17 2013 *)
PROG
(PARI) default(realprecision, 5000); c=Pi/10; u=[]; for(k=1, 9e9, ispseudoprime(c\.1^k) & !print1(k, ", ") & k=0*c=frac(c*10^k))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Sep 15 2013
EXTENSIONS
More terms from Jean-François Alcover, Oct 17 2013
STATUS
approved