login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229180 Expansion of (chi(-x) * chi(-x^3))^-3 in powers of x where chi() is a Ramanujan theta function. 3
1, 3, 6, 16, 33, 60, 118, 210, 354, 612, 1008, 1608, 2583, 4035, 6174, 9448, 14196, 21024, 31054, 45282, 65322, 93884, 133638, 188640, 265225, 370086, 512934, 708136, 971628, 1325724, 1802134, 2437200, 3280452, 4400132, 5876184, 7815288, 10360890, 13683525 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

In Verrill (1999) section 2.6, denoted by g as a function of q.

REFERENCES

H. Verrill, Some Congruences related to modular forms, Max Planck Institute, 1999.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

Michael Somos, Introduction to Ramanujan theta functions

H. Verrill, Some Congruences related to modular forms

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-1/2) * (eta(q^2) * eta(q^6) / (eta(q) * eta(q^3)))^3 in powers of q.

Euler transform of period 6 sequence [3, 0, 6, 0, 3, 0, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = (1/8) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A058492.

G.f.: t / (1 - 10*t^2 + 9*t^4)^(1/2) where t = the g.f. of A217786.

G.f.: 1 / (Product_{k>0} (1 - x^(2*k - 1)) * (1 - x^(6*k - 3)))^3.

Convolution inverse of A058492.

a(n) ~ exp(2*Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015

EXAMPLE

G.f. = 1 + 3*x + 6*x^2 + 16*x^3 + 33*x^4 + 60*x^5 + 118*x^6 + 210*x^7 + ...

G.f. = q + 3*q^3 + 6*q^5 + 16*q^7 + 33*q^9 + 60*q^11 + 118*q^13 + 210*q^15 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[x^3, x^6])^3, {x, 0, n}];

nmax = 40; CoefficientList[Series[Product[1/((1 - x^(2*k - 1)) * (1 - x^(6*k - 3)))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)))^3, n))};

CROSSREFS

Cf. A058492, A084471, A217786.

Sequence in context: A291611 A308401 A196261 * A219810 A122742 A052370

Adjacent sequences: A229177 A229178 A229179 * A229181 A229182 A229183

KEYWORD

nonn

AUTHOR

Michael Somos, Sep 30 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 08:04 EDT 2023. Contains 361455 sequences. (Running on oeis4.)