OFFSET
0,2
COMMENTS
REFERENCES
H. Verrill, Some Congruences related to modular forms, Max Planck Institute, 1999.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
H. Verrill, Some Congruences related to modular forms
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * (eta(q^2) * eta(q^6) / (eta(q) * eta(q^3)))^3 in powers of q.
Euler transform of period 6 sequence [3, 0, 6, 0, 3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = (1/8) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A058492.
G.f.: t / (1 - 10*t^2 + 9*t^4)^(1/2) where t = the g.f. of A217786.
G.f.: 1 / (Product_{k>0} (1 - x^(2*k - 1)) * (1 - x^(6*k - 3)))^3.
Convolution inverse of A058492.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
EXAMPLE
G.f. = 1 + 3*x + 6*x^2 + 16*x^3 + 33*x^4 + 60*x^5 + 118*x^6 + 210*x^7 + ...
G.f. = q + 3*q^3 + 6*q^5 + 16*q^7 + 33*q^9 + 60*q^11 + 118*q^13 + 210*q^15 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[x^3, x^6])^3, {x, 0, n}];
nmax = 40; CoefficientList[Series[Product[1/((1 - x^(2*k - 1)) * (1 - x^(6*k - 3)))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)))^3, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 30 2013
STATUS
approved