login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228252 Determinant of the (n+1) X (n+1) matrix with (i,j)-entry equal to (i-2j)^n for all i,j = 0,...,n. 1
1, 2, 64, 82944, 8153726976, 97844723712000000, 210357201231685877760000000, 111759427954264225978066246041600000000, 19353724511515955943723861007628909886308352000000000, 1393093075882582456065167957036969287436705021776979747143680000000000, 51765823014530203817669442380756522498563227474168874049894256476160000000000000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Note that a(n) = D(n,n,-2,0), where D(k,n,x,y) denotes the (n+1) X (n+1) determinant with (i,j)-entry equal to (i+j*x+y)^k for all i,j = 0,...,n. By the comments in A176113, it is known that D(n,n,x,y) = (-x)^{n*(n+1)/2}*(n!)^{n+1}. Note also that D(k,n,x,y) = 0 for all k = 0,...,n-1, which can be proved by using the definition of determinant and the binomial theorem.

For any matrices M of this pattern, M(i, j) = M(i-2, j-1). - Iain Fox, Feb 26 2018

REFERENCES

J. M. Monier, Algèbre et géometrie, Dunod, 1996.

LINKS

Iain Fox, Table of n, a(n) for n = 0..28

C. Krattenthaler, Advanced Determinant Calculus: A Complement, Linear Algebra Appl. 411 (2005), 68-166; arXiv:math/0503507 [math.CO], 2017.

FORMULA

a(n) = 2^(n*(n+1)/2)*(n!)^(n+1) as shown by comments. - Iain Fox, Apr 15 2018

EXAMPLE

Northwest corner of matrix corresponding to a(n):

0^n  (-2)^n  (-4)^n  (-6)^n  (-8)^n

  1  (-1)^n  (-3)^n  (-5)^n  (-7)^n

2^n       0  (-2)^n  (-4)^n  (-6)^n

3^n       1  (-1)^n  (-3)^n  (-5)^n

4^n     2^n       0  (-2)^n  (-4)^n

MATHEMATICA

a[n_]:=Det[Table[If[n==0, 1, (i-2j)^n], {i, 0, n}, {j, 0, n}]]

Table[a[n], {n, 0, 10}]

PROG

(PARI) a(n) = matdet(matrix(n+1, n+1, i, j, (i - 2*j + 1)^n)) \\ Iain Fox, Feb 16 2018

(PARI) a(n) = 2^(n*(n+1)/2)*(n!)^(n+1) \\ (faster and uses less memory) Iain Fox, Apr 15 2018

CROSSREFS

Cf. A176113.

Sequence in context: A060613 A139772 A092238 * A339305 A337651 A287649

Adjacent sequences:  A228249 A228250 A228251 * A228253 A228254 A228255

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Aug 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 23:09 EST 2021. Contains 340249 sequences. (Running on oeis4.)