login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228248
Number of 2n-step lattice paths from (0,0) to (0,0) using steps in {N, S, E, W} starting with East, then always moving straight ahead or turning left.
2
1, 0, 1, 3, 9, 30, 103, 357, 1257, 4494, 16246, 59246, 217719, 805389, 2996113, 11200113, 42047593, 158452138, 599113966, 2272065638, 8639763574, 32933685102, 125817012366, 481631387438, 1847110931703, 7095928565405, 27302745922817, 105204285608025
OFFSET
0,4
COMMENTS
From Gus Wiseman, Oct 13 2022: (Start)
Also the number of integer compositions of 2n whose half-alternating and skew-alternating sums are both 0, where we define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ..., and the skew-alternating sum to be A - B - C + D + E - F - G + ... For example, the a(0) = 1 through a(4) = 9 compositions are:
() . (1111) (1212) (1313)
(2121) (2222)
(11211) (3131)
(11312)
(12221)
(21311)
(112211)
(1112111)
(11111111)
For skew-alternating only: A001700, ranked by A357627, reverse A357628.
For partitions: A035363, half only A357639, skew only A357640.
For half-alternating only: A357641, ranked by A357625, reverse A357626.
These compositions are ranked by A357706.
(End)
LINKS
David Scambler et al., A new lattice walk and follow-up messages on the SeqFan list, May 08 2013.
FORMULA
a(n) ~ 2^(2n-1)/(Pi*n). - Vaclav Kotesovec, Jul 16 2014
EXAMPLE
a(0) = 1: [], the empty path.
a(1) = 0.
a(2) = 1: ENWS.
a(3) = 3: EENWWS, ENNWSS, ENWWSE.
MAPLE
b:= proc(x, y, n) option remember; `if`(abs(x)+abs(y)>n, 0,
`if`(n=0, 1, b(x+1, y, n-1) +b(y+1, -x, n-1)))
end:
a:= n-> ceil(b(0, 0, 2*n)/2):
seq(a(n), n=0..40);
# second Maple program:
a:= proc(n) option remember; `if`(n<5, [1, 0, 1, 3, 9][n+1],
((n-1)*(414288-1901580*n+186029*n^6-869551*n^5+2393807*n^4
-3938624*n^3+3753546*n^2+1050*n^8-21605*n^7)*a(n-1)
+(-17751540*n-12215020*n^5+3494038*n^6+3777840+27478070*n^4
-39711374*n^3+35488098*n^2-2700*n^9+62370*n^8-621126*n^7)*a(n-2)
+(-18193248+77490792*n-9138800*n^6+35323128*n^5-88122332*n^4
+141370392*n^3-140075264*n^2+5400*n^9-135540*n^8+1476432*n^7)*a(n-3)
+(-192473328*n+48577536+17091500*n^6-70036368*n^5+184890672*n^4
-313388816*n^3+328043052*n^2-8400*n^9+224440*n^8-2600032*n^7)*a(n-4)
+8*(n-5)*(150*n^6-2015*n^5+10852*n^4-29867*n^3+44208*n^2-33540*n
+10416)*(-9+2*n)^2*a(n-5)) / (n^2*(396988*n-487261*n^2+150*n^7
-3065*n^6+26092*n^5-119602*n^4+317746*n^3-131048)))
end:
seq(a(n), n=0..40);
MATHEMATICA
b[x_, y_, n_] := b[x, y, n] = If[Abs[x] + Abs[y] > n, 0, If[n == 0, 1, b[x + 1, y, n - 1] + b[y + 1, -x, n - 1]]];
a[n_] := Ceiling[b[0, 0, 2n]/2];
a /@ Range[0, 40] (* Jean-François Alcover, May 14 2020, after Maple *)
halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]), {i, Length[f]}];
skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]), {i, Length[f]}];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[2n], halfats[#]==0&&skats[#]==0&]], {n, 0, 7}] (* Gus Wiseman, Oct 12 2022 *)
CROSSREFS
Cf. A004006 (same rules, but self-avoiding).
Sequence in context: A148949 A148950 A148951 * A047064 A047007 A007453
KEYWORD
nonn,easy
AUTHOR
STATUS
approved