OFFSET
0,4
COMMENTS
From Gus Wiseman, Oct 13 2022: (Start)
Also the number of integer compositions of 2n whose half-alternating and skew-alternating sums are both 0, where we define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ..., and the skew-alternating sum to be A - B - C + D + E - F - G + ... For example, the a(0) = 1 through a(4) = 9 compositions are:
() . (1111) (1212) (1313)
(2121) (2222)
(11211) (3131)
(11312)
(12221)
(21311)
(112211)
(1112111)
(11111111)
These compositions are ranked by A357706.
(End)
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
David Scambler et al., A new lattice walk and follow-up messages on the SeqFan list, May 08 2013.
FORMULA
a(n) ~ 2^(2n-1)/(Pi*n). - Vaclav Kotesovec, Jul 16 2014
EXAMPLE
a(0) = 1: [], the empty path.
a(1) = 0.
a(2) = 1: ENWS.
a(3) = 3: EENWWS, ENNWSS, ENWWSE.
MAPLE
b:= proc(x, y, n) option remember; `if`(abs(x)+abs(y)>n, 0,
`if`(n=0, 1, b(x+1, y, n-1) +b(y+1, -x, n-1)))
end:
a:= n-> ceil(b(0, 0, 2*n)/2):
seq(a(n), n=0..40);
# second Maple program:
a:= proc(n) option remember; `if`(n<5, [1, 0, 1, 3, 9][n+1],
((n-1)*(414288-1901580*n+186029*n^6-869551*n^5+2393807*n^4
-3938624*n^3+3753546*n^2+1050*n^8-21605*n^7)*a(n-1)
+(-17751540*n-12215020*n^5+3494038*n^6+3777840+27478070*n^4
-39711374*n^3+35488098*n^2-2700*n^9+62370*n^8-621126*n^7)*a(n-2)
+(-18193248+77490792*n-9138800*n^6+35323128*n^5-88122332*n^4
+141370392*n^3-140075264*n^2+5400*n^9-135540*n^8+1476432*n^7)*a(n-3)
+(-192473328*n+48577536+17091500*n^6-70036368*n^5+184890672*n^4
-313388816*n^3+328043052*n^2-8400*n^9+224440*n^8-2600032*n^7)*a(n-4)
+8*(n-5)*(150*n^6-2015*n^5+10852*n^4-29867*n^3+44208*n^2-33540*n
+10416)*(-9+2*n)^2*a(n-5)) / (n^2*(396988*n-487261*n^2+150*n^7
-3065*n^6+26092*n^5-119602*n^4+317746*n^3-131048)))
end:
seq(a(n), n=0..40);
MATHEMATICA
b[x_, y_, n_] := b[x, y, n] = If[Abs[x] + Abs[y] > n, 0, If[n == 0, 1, b[x + 1, y, n - 1] + b[y + 1, -x, n - 1]]];
a[n_] := Ceiling[b[0, 0, 2n]/2];
a /@ Range[0, 40] (* Jean-François Alcover, May 14 2020, after Maple *)
halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]), {i, Length[f]}];
skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]), {i, Length[f]}];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[2n], halfats[#]==0&&skats[#]==0&]], {n, 0, 7}] (* Gus Wiseman, Oct 12 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
David Scambler and Alois P. Heinz, Aug 18 2013
STATUS
approved