login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227947
Each term is a palindrome such that the sum of its proper divisors is a palindrome > 1.
1
4, 6, 8, 9, 333, 646, 656, 979, 1001, 3553, 10801, 11111, 18581, 31713, 34943, 48484, 57375, 95259, 99099, 158851, 262262, 569965, 1173711, 1216121, 1399931, 1439341, 1502051, 1925291, 3203023, 3436343, 3659563, 3662663, 3803083, 3888883, 5185815, 5352535, 5893985, 5990995, 6902096, 9341439, 9452549
OFFSET
1,1
COMMENTS
All terms are composite numbers. - Chai Wah Wu, Dec 23 2015
LINKS
EXAMPLE
4 has proper divisors 1 and 2. 1 + 2 = 3 is also a palindrome. So 4 is a member of this sequence.
MATHEMATICA
palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; fQ[n_] := Block[{s = DivisorSigma[1, n] - n}, palQ@ s && s > 1]; Select[
Select[Range@ 1000000, palQ], fQ] (* Michael De Vlieger, Apr 06 2015 *)
spdQ[n_]:=Module[{spd=DivisorSigma[1, n]-n}, n==IntegerReverse[n] && spd>1 && spd==IntegerReverse[spd]]; Select[Range[10^7], spdQ] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Jan 03 2016 *)
PROG
(Python)
from sympy import divisors
def pal(n):
r = ''
for i in str(n):
r = i + r
return r == str(n)
{print(n, end=', ') for n in range(1, 10**7) if pal(n) and pal(sum(divisors(n))-n) and len(divisors(n)) > 2}
## Simplified by Derek Orr, Apr 05 2015
(PARI) pal(n)=d=digits(n); Vecrev(d)==d
for(n=1, 10^6, s=sigma(n)-n; if(pal(n)&&pal(s)&&s>1, print1(n, ", "))) \\ Derek Orr, Apr 05 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Oct 03 2013
EXTENSIONS
Initial terms 0 and 1 removed and more terms added by Derek Orr, Apr 05 2015
Definition edited by Derek Orr, Apr 05 2015
Definition edited by Harvey P. Dale, Jan 03 2016
STATUS
approved