login
A032350
Palindromic nonprime numbers.
16
1, 4, 6, 8, 9, 22, 33, 44, 55, 66, 77, 88, 99, 111, 121, 141, 161, 171, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 323, 333, 343, 363, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 606, 616
OFFSET
1,2
COMMENTS
Complement of A002385 (palindromic primes) with respect to A002113 (palindromic numbers). - Jaroslav Krizek, Mar 12 2013
Banks, Hart, and Sakata derive a nontrivial upper bound for the number of prime palindromes n <= x as x tends to infinity. It follows that almost all palindromes are composite. The results hold in any base. The authors use Weil's bound for Kloosterman sums. - Jonathan Sondow, Jan 02 2018
LINKS
W. D. Banks, D. N. Hart, and M. Sakata, Almost all palindromes are composite, Math. Res. Lett., 11 No. 5-6 (2004), 853-868.
Patrick De Geest, World!Of Numbers
Patrick De Geest, World!Of Palindromic Primes
MATHEMATICA
palq[n_] := IntegerDigits[n]==Reverse[IntegerDigits[n]]; Select[Range[700], palq[ # ]&&!PrimeQ[ # ]&]
(* Second program: *)
Select[Range@ 616, And[PalindromeQ@ #, ! PrimeQ@ #] &] (* Michael De Vlieger, Jan 02 2018 *)
PROG
(Sage)
[n for n in (1..616) if not is_prime(n) and Word(n.digits()).is_palindrome()] # Peter Luschny, Sep 13 2018
(GAP) Filtered([1..620], n-> not IsPrime(n) and ListOfDigits(n)=Reversed(ListOfDigits(n))); # Muniru A Asiru, Mar 08 2019
CROSSREFS
Sequence in context: A162738 A366826 A161600 * A078337 A046351 A161732
KEYWORD
easy,nonn,base
EXTENSIONS
Edited by Dean Hickerson, Oct 22 2002
STATUS
approved