The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227792 Expansion of (1 + 6*x + 17*x^2 - x^3 - 3*x^4)/(1 - 6*x^2 + x^4). 1
 1, 6, 23, 35, 134, 204, 781, 1189, 4552, 6930, 26531, 40391, 154634, 235416, 901273, 1372105, 5253004, 7997214, 30616751, 46611179, 178447502, 271669860, 1040068261, 1583407981, 6061962064, 9228778026, 35331704123, 53789260175, 205928262674 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also, values i where A067060(i)/i reaches a new maximum (conjectured). LINKS E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242. Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1) FORMULA G.f.: (1+6*x+17*x^2-x^3-3*x^4)/((1+2*x-x^2)*(1-2*x-x^2)). a(2n) = A038723(n+1), n>0. a(2n+1) = A001109(n+2). a(n) = (1/4) * (A135532(n+3) + (-1)^n*A001333(n+2) ). MATHEMATICA CoefficientList[Series[(1+6x+17x^2-x^3-3x^4)/(1-6x^2+x^4), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 6, 0, -1}, {1, 6, 23, 35, 134}, 40] (* Harvey P. Dale, Jun 12 2021 *) PROG (PARI) a(n)=polcoeff((-3*x^4-x^3+17*x^2+6*x+1)/(x^4-6*x^2+1)+O(x^100), n) CROSSREFS Cf. A041017. Sequence in context: A154817 A279797 A229486 * A161446 A081097 A031293 Adjacent sequences:  A227789 A227790 A227791 * A227793 A227794 A227795 KEYWORD nonn,easy AUTHOR Ralf Stephan, Sep 23 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 1 10:21 EDT 2022. Contains 354959 sequences. (Running on oeis4.)