|
|
A227792
|
|
Expansion of (1 + 6*x + 17*x^2 - x^3 - 3*x^4)/(1 - 6*x^2 + x^4).
|
|
1
|
|
|
1, 6, 23, 35, 134, 204, 781, 1189, 4552, 6930, 26531, 40391, 154634, 235416, 901273, 1372105, 5253004, 7997214, 30616751, 46611179, 178447502, 271669860, 1040068261, 1583407981, 6061962064, 9228778026, 35331704123, 53789260175, 205928262674
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Also, values i where A067060(i)/i reaches a new maximum (conjectured).
|
|
LINKS
|
Table of n, a(n) for n=0..28.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1)
|
|
FORMULA
|
G.f.: (1+6*x+17*x^2-x^3-3*x^4)/((1+2*x-x^2)*(1-2*x-x^2)).
a(2n) = A038723(n+1), n>0.
a(2n+1) = A001109(n+2).
a(n) = (1/4) * (A135532(n+3) + (-1)^n*A001333(n+2) ).
|
|
PROG
|
(PARI) a(n)=polcoeff((-3*x^4-x^3+17*x^2+6*x+1)/(x^4-6*x^2+1)+O(x^100), n)
|
|
CROSSREFS
|
Cf. A041017.
Sequence in context: A154817 A279797 A229486 * A161446 A081097 A031293
Adjacent sequences: A227789 A227790 A227791 * A227793 A227794 A227795
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Ralf Stephan, Sep 23 2013
|
|
STATUS
|
approved
|
|
|
|