login
A154817
Triangle T(n,k) = A060187(n+2,k+2), 1<=k<=n.
0
6, 23, 23, 76, 230, 76, 237, 1682, 1682, 237, 722, 10543, 23548, 10543, 722, 2179, 60657, 259723, 259723, 60657, 2179, 6552, 331612, 2485288, 4675014, 2485288, 331612, 6552, 19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340
OFFSET
1,1
COMMENTS
The triangle of MacMahon numbers with the first column and diagonal removed.
Row sums are 6, 46, 382, .. = A000165(n+1)-2.
EXAMPLE
6;
23, 23;
76, 230, 76;
237, 1682, 1682, 237;
722, 10543, 23548, 10543, 722;
2179, 60657, 259723, 259723, 60657, 2179;
6552, 331612, 2485288, 4675014, 2485288, 331612, 6552;
19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340, 19673;
59038, 9116141, 178300904, 906923282, 1527092468, 906923282, 178300904, 9116141, 59038;
MATHEMATICA
p[x_, n_] = 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2];
t[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m]];
Table[ Select[ Table[ t[ n, i ], {i, 1, n}], # > 1 & ], {n, 0, 14} ];
Select[ Flatten[ Table[ t[ n, i ], {n, 0, 13}, {i, 1, n} ] ], # > 1 & ]
CROSSREFS
Sequence in context: A160633 A012327 A012523 * A279797 A229486 A227792
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 15 2009
STATUS
approved