login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154817
Triangle T(n,k) = A060187(n+2,k+2), 1<=k<=n.
0
6, 23, 23, 76, 230, 76, 237, 1682, 1682, 237, 722, 10543, 23548, 10543, 722, 2179, 60657, 259723, 259723, 60657, 2179, 6552, 331612, 2485288, 4675014, 2485288, 331612, 6552, 19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340
OFFSET
1,1
COMMENTS
The triangle of MacMahon numbers with the first column and diagonal removed.
Row sums are 6, 46, 382, .. = A000165(n+1)-2.
EXAMPLE
6;
23, 23;
76, 230, 76;
237, 1682, 1682, 237;
722, 10543, 23548, 10543, 722;
2179, 60657, 259723, 259723, 60657, 2179;
6552, 331612, 2485288, 4675014, 2485288, 331612, 6552;
19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340, 19673;
59038, 9116141, 178300904, 906923282, 1527092468, 906923282, 178300904, 9116141, 59038;
MATHEMATICA
p[x_, n_] = 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2];
t[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m]];
Table[ Select[ Table[ t[ n, i ], {i, 1, n}], # > 1 & ], {n, 0, 14} ];
Select[ Flatten[ Table[ t[ n, i ], {n, 0, 13}, {i, 1, n} ] ], # > 1 & ]
CROSSREFS
Sequence in context: A160633 A012327 A012523 * A279797 A229486 A227792
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 15 2009
STATUS
approved