login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154816
A triangular sequence of polynomial coefficients: p(x,n)=((-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(5*m + 4)^n*x^m, {m, 0, Infinity}] + (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(5*m + 1)^n*x^m, {m, 0, Infinity}]).
0
2, 5, 5, 17, 66, 17, 65, 685, 685, 65, 257, 6572, 16342, 6572, 257, 1025, 60675, 313300, 313300, 60675, 1025, 4097, 549418, 5340455, 10712060, 5340455, 549418, 4097, 16385, 4931825, 84856215, 303945575, 303945575, 84856215, 4931825, 16385
OFFSET
0,1
COMMENTS
Row sums are:
{2, 10, 100, 1500, 30000, 750000, 22500000, 787500000, 31500000000,
1417500000000, 70875000000000}
FORMULA
p(x,n)=((-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(5*m + 4)^n*x^m, {m, 0, Infinity}] +
(-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(5*m + 1)^n*x^m, {m, 0, Infinity}]);
t(n,m)=coefficients(p(x,n))
EXAMPLE
{2},
{5, 5},
{17, 66, 17},
{65, 685, 685, 65},
{257, 6572, 16342, 6572, 257},
{1025, 60675, 313300, 313300, 60675, 1025},
{4097, 549418, 5340455, 10712060, 5340455, 549418, 4097},
{16385, 4931825, 84856215, 303945575, 303945575, 84856215, 4931825, 16385},
{65537, 44136504, 1289970236, 7671841928, 13487971590, 7671841928, 1289970236, 44136504, 65537},
{262145, 394876735, 19055809150, 179073190690, 510225861280, 510225861280, 179073190690, 19055809150, 394876735, 262145},
{1048577, 3535716230, 276229994965, 3958390776760, 17297519264170, 27803646398596, 17297519264170, 3958390776760, 276229994965, 3535716230, 1048577}
MATHEMATICA
Clear[p]; p[x_, n_] = ((-1)^( n + 1)*(x - 1)^(n + 1)*Sum[(5*m + 4)^n*x^m, {m, 0, Infinity}] +
(-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(5*m + 1)^n*x^m, {m, 0, Infinity}]);
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A219586 A082534 A165659 * A367299 A140600 A056396
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Jan 15 2009
STATUS
approved