login
Triangle T(n,k) = A060187(n+2,k+2), 1<=k<=n.
0

%I #6 Mar 30 2012 17:34:29

%S 6,23,23,76,230,76,237,1682,1682,237,722,10543,23548,10543,722,2179,

%T 60657,259723,259723,60657,2179,6552,331612,2485288,4675014,2485288,

%U 331612,6552,19673,1756340,21707972,69413294,69413294,21707972,1756340

%N Triangle T(n,k) = A060187(n+2,k+2), 1<=k<=n.

%C The triangle of MacMahon numbers with the first column and diagonal removed.

%C Row sums are 6, 46, 382, .. = A000165(n+1)-2.

%e 6;

%e 23, 23;

%e 76, 230, 76;

%e 237, 1682, 1682, 237;

%e 722, 10543, 23548, 10543, 722;

%e 2179, 60657, 259723, 259723, 60657, 2179;

%e 6552, 331612, 2485288, 4675014, 2485288, 331612, 6552;

%e 19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340, 19673;

%e 59038, 9116141, 178300904, 906923282, 1527092468, 906923282, 178300904, 9116141, 59038;

%t p[x_, n_] = 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2];

%t t[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m]];

%t Table[ Select[ Table[ t[ n, i ], {i, 1, n}], # > 1 & ], {n, 0, 14} ];

%t Select[ Flatten[ Table[ t[ n, i ], {n, 0, 13}, {i, 1, n} ] ], # > 1 & ]

%Y Cf. A060187

%K nonn,tabl

%O 1,1

%A _Roger L. Bagula_, Jan 15 2009