login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227134
Partitions with parts repeated at most twice and repetition only allowed if first part has an odd index (first index = 1).
3
1, 1, 2, 2, 4, 4, 7, 8, 11, 14, 19, 22, 30, 36, 46, 55, 70, 83, 104, 123, 151, 179, 218, 256, 309, 363, 433, 507, 602, 701, 828, 961, 1127, 1306, 1525, 1759, 2046, 2355, 2725, 3129, 3609, 4131, 4750, 5424, 6214, 7081, 8090, 9195, 10478, 11886, 13506, 15290, 17335, 19583, 22154, 24981, 28197, 31741, 35757, 40176, 45176
OFFSET
0,3
LINKS
FORMULA
Conjecture: A227134(n) + A227135(n) = A182372(n) for n >= 0, see comment in A182372.
G.f.: 1/(1-x) + Sum_{n>=2} x^A002620(n+1) / Product_{k=1..n} (1-x^k), where A002620(n) = floor(n/2)*ceiling(n/2) forms the quarter-squares. - Paul D. Hanna, Jul 06 2013
a(n) ~ c * exp(Pi*sqrt(2*n/5)) / n^(3/4), where c = 1 / (2^(1/4)*sqrt(5*(1 + sqrt(5)))) = 0.2090492823352... - Vaclav Kotesovec, May 28 2018, updated Mar 06 2020
EXAMPLE
G.f.: 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 7*x^6 + 8*x^7 + 11*x^8 + ...
G.f.: 1/(1-x) + x^2/((1-x)*(1-x^2)) + x^4/((1-x)*(1-x^2)*(1-x^3)) + x^6/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + x^9/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) + x^12/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6))) + ...
There are a(13)=36 such partitions, displayed here as partitions into two sorts of parts (format P:S for sort:part) where the first sort is 0 and sorts oscillate:
01: [ 1:0 1:1 2:0 2:1 3:0 4:1 ]
02: [ 1:0 1:1 2:0 2:1 7:0 ]
03: [ 1:0 1:1 2:0 3:1 6:0 ]
04: [ 1:0 1:1 2:0 4:1 5:0 ]
05: [ 1:0 1:1 2:0 9:1 ]
06: [ 1:0 1:1 3:0 3:1 5:0 ]
07: [ 1:0 1:1 3:0 8:1 ]
08: [ 1:0 1:1 4:0 7:1 ]
09: [ 1:0 1:1 5:0 6:1 ]
10: [ 1:0 1:1 11:0 ]
11: [ 1:0 2:1 3:0 3:1 4:0 ]
12: [ 1:0 2:1 3:0 7:1 ]
13: [ 1:0 2:1 4:0 6:1 ]
14: [ 1:0 2:1 5:0 5:1 ]
15: [ 1:0 2:1 10:0 ]
16: [ 1:0 3:1 4:0 5:1 ]
17: [ 1:0 3:1 9:0 ]
18: [ 1:0 4:1 8:0 ]
19: [ 1:0 5:1 7:0 ]
20: [ 1:0 12:1 ]
21: [ 2:0 2:1 3:0 6:1 ]
22: [ 2:0 2:1 4:0 5:1 ]
23: [ 2:0 2:1 9:0 ]
24: [ 2:0 3:1 4:0 4:1 ]
25: [ 2:0 3:1 8:0 ]
26: [ 2:0 4:1 7:0 ]
27: [ 2:0 5:1 6:0 ]
28: [ 2:0 11:1 ]
29: [ 3:0 3:1 7:0 ]
30: [ 3:0 4:1 6:0 ]
31: [ 3:0 10:1 ]
32: [ 4:0 4:1 5:0 ]
33: [ 4:0 9:1 ]
34: [ 5:0 8:1 ]
35: [ 6:0 7:1 ]
36: [13:0 ]
MAPLE
## Computes A227134 and A227135 in order n^2 time and order n^2 memory:
a34:=proc(n) # n-th term of A227134
return oddMin(n, 1):
end proc:
a35:=proc(n) # n-th term of A227135
return evenMin(n, 1):
end proc:
# oddMin(n, m) finds number of partitions of n (as in A227134) but with the
# minimum part AT LEAST m
oddMin:=proc(n, m) option remember:
if(n=0) then return 1: fi: ## Start base cases
if((n<0) or (m>n)) then return 0: fi:
if(n=m) then return 1: fi: ## End base cases
return oddMin(n, m+1) + evenMin(n-m, m+1) + oddMin(n-2*m, m+1): ## How many times is the element m in the partition
end proc:
# evenMin(n, m) finds number of partitions of n (as in A227135) but with the
# minimum part AT LEAST m
evenMin:=proc(n, m) option remember:
if(n=0) then return 1: fi: ## Start base cases
if((n<0) or (m>n)) then return 0: fi:
if(n=m) then return 1: fi: ## End base cases
return evenMin(n, m+1) + oddMin(n-m, m+1): ## Is the element m in the partition
end proc:
## Patrick Devlin, Jul 02 2013
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0, t,
`if`(i*(i+1)<n, 0, add(b(n-i*j, i-1,
irem(t+j, 2)), j=0..min(t+1, n/i))))
end:
a:= n-> add(b(n$2, t), t=0..1):
seq(a(n), n=0..60); # Alois P. Heinz, Feb 15 2017
MATHEMATICA
nMax = 60; 1/(1-x) + Sum[x^Floor[(n+1)^2/4]/Product[1-x^k, {k, 1, n}], {n, 2, Ceiling @ Sqrt[4*nMax]}] + O[x]^(nMax+1) // CoefficientList[#, x]& (* Jean-François Alcover, Feb 15 2017, after Paul D. Hanna *)
PROG
(PARI) {A002620(n)=floor(n/2)*ceil(n/2)}
{a(n)=polcoeff(1/(1-x+x*O(x^n)) + sum(m=2, sqrtint(4*n), x^A002620(m+1)/prod(k=1, m, 1-x^k+x*O(x^n))), n)}
for(n=0, 60, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 06 2013
CROSSREFS
Cf. A227135 (parts may repeat after even index).
Sequence in context: A095700 A339404 A035944 * A240013 A050366 A332753
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 02 2013
STATUS
approved