login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227133 Given a square grid with side n consisting of n^2 cells (or points), a(n) is the maximum number of points that can be painted so that no four of the painted ones form a square with sides parallel to the grid. 16
1, 3, 7, 12, 17, 24, 32, 41, 51, 61, 73, 85, 98 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(1) through a(9) were found by an exhaustive computational search for all solutions. This sequence is complementary to A152125: A152125(n) + A227133(n) = n^2.
A064194(n) is a lower bound on a(n) (see the comments in A047999). - N. J. A. Sloane, Jan 18 2016
a(11) >= 71 (by extending the n=10 solution towards the southeast). - N. J. A. Sloane, Feb 12 2016
a(11) >= 73, a(12) >= 85, a(13) >= 98, a(14) >= 112, a(15) >= 127, a(16) >= 142 (see links). These lower bounds were obtained using tabu search and simulated annealing via the Ascension Optimization Framework. - Peter Karpov, Feb 22 2016; corrected Jun 04 2016
Note that n is the number of cells along each edge of the grid. The case n=1 corresponds to a single square cell, n=2 to a 2 X 2 array of four square cells. The standard chessboard is the case n=8. It is easy to get confused and to think of the case n=2 as a 3 X 3 grid of dots (the vertices of the squares in the grid). Don't think like that! - N. J. A. Sloane, Apr 03 2016
a(12) = 85 and a(13) = 98 were obtained with a MIP model, solved with Gurobi in 141 days on 32 cores. - Simon Felix, Nov 22 2019
LINKS
Peter Karpov, InvMem, Item 20 [Link added by N. J. A. Sloane, Feb 24 2016]
Peter Karpov, Ascension Optimization Framework [Link added by N. J. A. Sloane, Feb 24 2016]
EXAMPLE
n=9. A maximum of a(9) = 51 points (X) of 81 can be painted while 30 (.) must be left unpainted. The following 9 X 9 square is an example:
. X X X X X . X .
X . X . . X X X X
X X . . X . X . X
X . . X X X X . .
X X X . X . . X X
X . X X X . . . X
. X X . . X X . X
X X . X . X . X X
. X X X X X X X .
Here there is no subsquare with all vertices = X and having sides parallel to the axes.
MATHEMATICA
a[n_] := Block[{m, qq, nv = n^2, ne}, qq = Flatten[1 + Table[n*x + y + {0, s, s*n, s*(n + 1)}, {x, 0, n-2}, {y, 0, n-2}, {s, Min[n-x, n-y] -1}], 2]; ne = Length@qq; m = Table[0, {ne}, {nv}]; Do[m[[i, qq[[i]]]] = 1, {i, ne}]; Total@ Quiet@ LinearProgramming[Table[-1, {nv}], m, Table[{3, -1}, {ne}], Table[{0, 1}, {nv}], Integers]]; Array[a, 8] (* Giovanni Resta, Jul 14 2013 *)
CROSSREFS
Cf. A152125 (the complementary problem), A000330, A240443 (when all squares must be avoided, not just those aligned with the grid).
See also A047999, A064194.
For a lower bound see A269745.
For analogs that avoid triangles in the square grid see A271906, A271907.
For an equilateral triangular grid analog see A227308 (and A227116).
For the three-dimensional analog see A268239.
Sequence in context: A332263 A310248 A298022 * A170883 A198463 A140778
KEYWORD
nonn,hard,nice,more
AUTHOR
Heinrich Ludwig, Jul 06 2013
EXTENSIONS
a(10) from Giovanni Resta, Jul 14 2013
a(11) from Paul Tabatabai using integer programming, Sep 25 2018
a(12)-a(13) from Simon Felix using integer programming, Nov 22 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 19:02 EDT 2024. Contains 371798 sequences. (Running on oeis4.)