login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226935
Least prime p(1) beginning a chain of primes p(i) = i*p(i-1) - (i-1) for i = 2, 3, ..., n.
0
2, 2, 2, 19, 19, 8629, 748669, 2506981, 228698251, 228698251
OFFSET
1,1
COMMENTS
Initial primes p(1) cannot be 3 mod 10 (except p(1) = 3) because p(2) would be 5 mod 10, not prime, and cannot be 7 mod 10 because p(4) would be 5 mod 10, not prime.
FORMULA
p(i) - p(i-1) = (i! - (i-1)!)*(p(1) - 1).
EXAMPLE
a(5) --> p(1) = 19 because p(2) = 2*p(1) - 1 = 37, p(3) = 3*p(2) - 2 = 109, p(4) = 4*p(3) - 3 = 433, p(5) =5*p(4) - 4 = 2161 are primes.
PROG
(PARI) \\ Find a(9)
n=8; v=vector(n); forprime(p=2, 10^9, i=0; a=2*p-1; b=3*a-2; c=4*b-3; d=5*c-4; e=6*d-5; f=7*e-6; g=8*f-7; h=9*g-8; if(isprime(a), i++; v[1]=a, v[1]=0); if(isprime(b), i++; v[2]=b, v[2]=0); if(isprime(c), i++; v[3]=c, v[3]=0); if(isprime(d), i++; v[4]=d, v[4]=0); if(isprime(e), i++; v[5]=e, v[5]=0); if(isprime(f), i++; v[6]=f, v[6]=0); if(isprime(g), i++; v[7]=g, v[7]=0); if(isprime(h), i++; v[8]=h, v[8]=0); if(i>n-1, print([p, v, i])))
(PARI) ct(p); my(i=2); while(isprime(p=i*p-i+1), i++); i
a(n)=forprime(p=2, , if(ct(p)>n, return(p))) \\ Charles R Greathouse IV, Sep 27 2015
CROSSREFS
Sequence in context: A064215 A358633 A087238 * A099640 A140283 A067097
KEYWORD
nonn,more
AUTHOR
Robin Garcia, Jun 22 2013
STATUS
approved