OFFSET
0,6
REFERENCES
M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 22.
FORMULA
a(n) = numerator(Sum_{k=0..n}(k!*Stirling1(n,k))/n!). - Vladimir Kruchinin, Oct 10 2016
EXAMPLE
1+x+(1/2)*x^2+(1/3)*x^3+(1/6)*x^4+(7/60)*x^5+(19/360)*x^6+(3/70)*x^7+(5/336)*x^8+(13/756)*x^9+...
MATHEMATICA
Table[Numerator@ Sum[(k! StirlingS1[n, k])/n!, {k, 0, n}], {n, 0, 27}] (* Michael De Vlieger, Oct 08 2016 *)
PROG
(PARI) x = 'x + O('x^30); apply(x->numerator(x), Vec(1/(1-log(1+x)))) \\ Michel Marcus, Oct 08 2016
(Sage)
def A226932_list(dim):
C = [[0 for k in range(m+1)] for m in range(dim)]
C[0][0] = 1; F = [1]
for m in (1..dim-1):
F.append(F[m-1]*m)
C[m][m] = -C[m-1][m-1]
for k in range(m-1, 0, -1):
S = sum(C[m][k+i-1]/F[i] for i in (2..m-k+1))
C[m][k] = -(C[m-1][k-1] + S)
return [(-1)^j*sum(r).numerator() for j, r in enumerate(C)]
print(A226932_list(28)) # Peter Luschny, Sep 15 2017
CROSSREFS
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Jul 31 2013
STATUS
approved