

A226930


Second differences give the sequence itself, but read digitbydigit.


2



1, 2, 4, 8, 16, 32, 49, 72, 98, 126, 158, 199, 247, 297, 356, 423, 491, 561, 637, 714, 796, 886, 977, 1077, 1186, 1297, 1412, 1534, 1658, 1791, 1931, 2074, 2222, 2376, 2534, 2694, 2857, 3024, 3200, 3377, 3559, 3747, 3936
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

There are many sequences with this property, but this is the lexicographically earliest such sequence which has positive terms and is strictly increasing. For a discussion of the growth rate, see A227844.  N. J. A. Sloane, Aug 20 2013


LINKS

Alois P. Heinz and N. J. A. Sloane, Table of n, a(n) for n = 1..20000


EXAMPLE

The second differences are 1, 2, 4, 8, 1, 6, 3, 2, 4, 9, 7, 2, 9, 8, 1, 2, 6, 1, 5, 8, 1, 9, 9, 2, 4, 7, ...


MAPLE

# From N. J. A. Sloane, Aug 21 2013
a:=[1, 2, 4]; b:=[1, 2]; c:=[1]; la:=3; lb:=2; lc:=1;
M:=100;
p:=2;
for n from 1 to M do
N:=a[p];
s:=convert(N, base, 10);
ls:=nops(s);
for i from 1 to ls do
c:=[op(c), s[lsi+1]]; lc:=lc+1;
b:=[op(b), b[lb]+c[lc]]; lb:=lb+1;
a:=[op(a), a[la]+b[lb]]; la:=la+1;
od:
p:=p+1;
od:
[seq(a[i], i=1..la)];


PROG

Haskell program from Arie Groeneveld, Aug 31 2013:
digits = map (fromIntegral.digitToInt). show
inverseDiff xs = scanl (+) (head xs) xs
seqA = iterate ((!!2). iterate inverseDiff. concatMap digits) [1]
Example (executed in GHCi):
> seqA !!4
[1, 2, 4, 8, 16, 32, 49, 72, 98, 126, 158, 199, 247, 297]


CROSSREFS

Cf. A227844.
Sequence in context: A326079 A222193 A217833 * A297702 A306314 A007055
Adjacent sequences: A226927 A226928 A226929 * A226931 A226932 A226933


KEYWORD

nonn,base


AUTHOR

Eric Angelini, Jul 30 2013


EXTENSIONS

More terms from Paolo P. Lava, Jul 30 2013


STATUS

approved



