Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 27 2015 10:27:46
%S 2,2,2,19,19,8629,748669,2506981,228698251,228698251
%N Least prime p(1) beginning a chain of primes p(i) = i*p(i-1) - (i-1) for i = 2, 3, ..., n.
%C Initial primes p(1) cannot be 3 mod 10 (except p(1) = 3) because p(2) would be 5 mod 10, not prime, and cannot be 7 mod 10 because p(4) would be 5 mod 10, not prime.
%F p(i) - p(i-1) = (i! - (i-1)!)*(p(1) - 1).
%e a(5) --> p(1) = 19 because p(2) = 2*p(1) - 1 = 37, p(3) = 3*p(2) - 2 = 109, p(4) = 4*p(3) - 3 = 433, p(5) =5*p(4) - 4 = 2161 are primes.
%o (PARI) \\ Find a(9)
%o n=8; v=vector(n); forprime(p=2,10^9,i=0; a=2*p-1; b=3*a-2; c=4*b-3; d=5*c-4; e=6*d-5; f=7*e-6; g=8*f-7; h=9*g-8; if(isprime(a),i++; v[1]=a, v[1]=0); if(isprime(b), i++; v[2]=b, v[2]=0); if(isprime(c), i++; v[3]=c, v[3]=0); if(isprime(d), i++; v[4]=d, v[4]=0); if(isprime(e), i++; v[5]=e, v[5]=0); if(isprime(f), i++; v[6]=f, v[6]=0); if(isprime(g), i++; v[7]=g, v[7]=0); if(isprime(h), i++; v[8]=h, v[8]=0); if(i>n-1,print([p,v, i])))
%o (PARI) ct(p); my(i=2); while(isprime(p=i*p-i+1), i++); i
%o a(n)=forprime(p=2,, if(ct(p)>n, return(p))) \\ _Charles R Greathouse IV_, Sep 27 2015
%Y Cf. A005603, A088251.
%K nonn,more
%O 1,1
%A _Robin Garcia_, Jun 22 2013