login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226533
a(n) = smallest integer m such that m^n is a sum of two successive primes.
1
5, 6, 2, 150, 22, 82, 2, 258, 70, 30, 42, 18, 2, 12, 262, 58, 460, 36, 552, 24, 318, 344, 450, 54, 274, 88, 36, 92, 90, 188, 554, 20, 404, 700, 240, 6, 136, 262, 578, 222, 2182, 276, 162, 60, 142, 326, 176, 198, 930, 1116
OFFSET
1,1
EXAMPLE
5^1 = 5 = 2 + 3, 6^2 = 36 = 17 + 19, 2^3 = 8 = 3 + 5, 150^4 =506250000 = 253124999 + 253125001.
MATHEMATICA
a[n_] := For[m = 2, True, m++, p = m^n/2 // NextPrime[#, -1]&; q = NextPrime[p]; If[p + q == m^n, Print["a(", n, ") = ", m]; Return[m]]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jun 10 2013 *)
tsp[n_]:=Module[{m=1, t}, t=m^n; While[NextPrime[t/2]+NextPrime[t/2, -1]! = t, m++; t=m^n]; m]; Array[tsp, 50] (* Harvey P. Dale, Nov 10 2014 *)
PROG
(PARI) a(n)=if(n==1, return(5)); my(m=1, M, p); while(1, M=m++^n; p=precprime(M/2); ispseudoprime(M-p) && M-p==nextprime(M/2) && return(m)) \\ Charles R Greathouse IV, Jun 10 2013
CROSSREFS
a(2) = 6 = A074924(1), a(3) = 2 = A074925(1). Cf. A001043, A001597.
Sequence in context: A072733 A018851 A260463 * A011499 A242813 A106599
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 09 2013
EXTENSIONS
a(41)-a(50) from Jean-François Alcover, Jun 10 2013
STATUS
approved