OFFSET
0,3
COMMENTS
The following discussion is based on comments from David A. Corneth, Robert Israel, N. J. A. Sloane, and Chai Wah Wu. (Start)
As the graph shows, the points belong to various "curves". For each n there is a value d = d(n) such that n*10^d <= a(n)^2 < (n+1)*10^d, and so on this curve, a(n) ~ sqrt(n)*10^(d/2). The values of d(n) are given in A272677.
For a given n, d can range from 0 (if n is a square) to d_max, where it appears that d_max approx. equals 3 + floor( log_10(n/25) ). The successive points where d_max increases are given in A272678, and that entry contains more precise conjectures about the values.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..20000
Zak Seidov, Blog entry
Zak Seidov, Blog entry [Cached copy, pdf format, with permission]
FORMULA
a(n) >= sqrt(n), for all n >= 0 with equality when n is a square. - Derek Orr, Jul 26 2015
MAPLE
f:= proc(n) local d, m;
for d from 0 do
m:= ceil(sqrt(10^d*n));
if m^2 < 10^d*(n+1) then return m fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Jul 26 2015
PROG
(PARI) a(n)=k=1; while(k, d=digits(k^2); D=digits(n); if(#D<=#d, c=1; for(i=1, #D, if(D[i]!=d[i], c=0; break)); if(c, return(k))); k++)
vector(100, n, a(n)) \\ Derek Orr, Jul 26 2015
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
Added initial 0. - N. J. A. Sloane, May 21 2016
Comments revised by N. J. A. Sloane, Jul 17 2016
STATUS
approved