login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A018852
a(n)^3 is smallest cube beginning with n.
13
0, 1, 3, 7, 16, 8, 4, 9, 2, 21, 10, 48, 5, 11, 52, 25, 55, 12, 57, 27, 59, 6, 61, 62, 29, 63, 64, 3, 66, 31, 67, 68, 32, 15, 7, 33, 154, 72, 73, 34, 16, 161, 35, 76, 164, 77, 36, 78, 169, 17, 37, 8, 174, 81, 38, 82, 178, 83, 18, 39, 182, 85, 184, 86, 4, 87, 188, 189, 19, 191, 89, 193, 9
OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from T. D. Noe)
FORMULA
a(n) >= n^(1/3), for all n > 0, with equality when n is a cube. - Derek Orr, Jul 26 2015
MAPLE
f:= proc(n) local d, m;
for d from 0 do
m:= ceil((10^d*n)^(1/3));
if m^3 < 10^d*(n+1) then return m fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Jul 26 2015
PROG
(Python)
for n in range(1, 10**3):
for k in range(10**3):
if str(k**3).startswith(str(n)):
print(k, end=', ')
break
n += 1 # Derek Orr, Aug 03 2014
(PARI) a(n)=k=1; while(k, d=digits(k^3); D=digits(n); if(#D<=#d, c=1; for(i=1, #D, if(D[i]!=d[i], c=0; break)); if(c, return(k))); k++)
vector(100, n, a(n)) \\ Derek Orr, Jul 26 2015
CROSSREFS
Cf. A018797.
Cf. A018851 (k=2), this sequence (k=3), A018853 (k=4), A018872 (k=5), A018874 (k=6), A018876 (k=7), A018878 (k=8), A018880 (k=9), A018882 (k=10).
Sequence in context: A175878 A180503 A153578 * A260465 A060092 A035283
KEYWORD
nonn,base,look
EXTENSIONS
0 prepended by Seiichi Manyama, Jan 30 2017
STATUS
approved