login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226122
Expansion of (1+2*x+x^2+x^3+2*x^4+x^5)/(1-2*x^3+x^6).
0
1, 2, 1, 3, 6, 3, 5, 10, 5, 7, 14, 7, 9, 18, 9, 11, 22, 11, 13, 26, 13, 15, 30, 15, 17, 34, 17, 19, 38, 19, 21, 42, 21, 23, 46, 23, 25, 50, 25, 27, 54, 27, 29, 58, 29, 31, 62, 31, 33, 66, 33, 35, 70, 35, 37, 74, 37, 39, 78, 39
OFFSET
0,2
COMMENTS
A226023 (starting from A226023(-2)=0) and successive differences:
0, -1, 0, 2, 3, 6, 12, 15, 20, 30,...
-1, 1, 2, 1, 3, 6, 3, 5, 10, 5,... = a(n-1)
2, 1, -1, 2, 3, -3, 2, 5, -5, 2,...
-1, -2, 3, 1, -6, 5, 3, -10, 7, 5,...
-1, 5, -2, -7, 11, -2, -13, 17, -2, -19,...
6, -7, -5, 18, -13, -11, 30, -19, -17, 42,...
-13, 2, 23, -31, 2, 41, -49, 2, 59, 67,...
15, 21, -54, 33, 39, -90, 51, 57, -126, 69,... multiples of 3
6, -75, 87, 6, -129, 141, 6, -183, 195, 6,... multiples of 3
-81, 162, -81, -135, 270, -135, -189, 378, -189, -243,... multiples of 27
The last line is -27*a(n+3)*A131561(n+1).
The recurrences in the Formula field hold for the array.
FORMULA
a(n) = A130823(n-1) * A131534(n).
a(n) = A226023(n) - A226023(n-1) with A226023(-1)=-1.
a(n) = 3*a(n-3) -3*a(n-6) +a(n-9) = a(n-1) +2*a(n-3) -2*a(n-4) -a(n-6) +a(n-7). [Ralf Stephan]
From Bruno Berselli, May 29 2013: (Start)
G.f.: (1+x)^3*(1-x+x^2)/((1-x)^2*(1+x+x^2)^2).
a(n) = 2*a(n-3)-a(n-6).
a(3n)*a(3n-1)-a(3n-2) = A016754(n-1), n>0. (End)
EXAMPLE
Given A130823 = 1,1,1,3,3,3,5,5,5,7,7,7,... and A131534 = 1,2,1,1,2,1,1,2,1,1,2,1,..., then a(0)=1*1=1, a(1)=1*2=2, a(2)=1*1=1, a(3)=3*1=3, a(4)=3*2=6, etc.
Given A226023(n) from A226023(-1)=-1, then a(0)=0-(-1)=1, a(1)=2-0=2, a(2)=3-2=1, a(3)=6-3=3, a(4)=12-6=6, etc.
MATHEMATICA
repeat=20; Table[{1, 2, 1}, {repeat}]*(2*Range[repeat]-1) // Flatten
(* or *) Table[Floor[(2*n+1)/3]*Floor[(2*n+5)/3], {n, -1, 59}] // Differences (* Jean-François Alcover, May 29 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 27 2013
STATUS
approved