login
A226123
Number of terms of the form 2^k in Collatz(3x+1) trajectory of n.
2
1, 2, 5, 3, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 9, 5, 5, 5, 5, 5, 5, 5, 5, 7, 9, 5, 5
OFFSET
1,2
COMMENTS
a(n) = sum(A209229(A070165(n,k)): k=1..A006577(n)). - Reinhard Zumkeller, May 30 2013
LINKS
EXAMPLE
a(3)=5 since Collatz trajectory of 3 contains terms 1,2,4,8 and 16.
MATHEMATICA
coll[n_]:=NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #>1&]; Table[Length[Select[coll[n], IntegerQ[Log[2, #]]&]], {n, 87}]
PROG
(Haskell)
a226123 = sum . map a209229 . a070165_row
-- Reinhard Zumkeller, May 30 2013
CROSSREFS
Cf. A070165.
Sequence in context: A266407 A249273 A078376 * A368658 A216052 A021911
KEYWORD
nonn
AUTHOR
Jayanta Basu, May 27 2013
STATUS
approved