login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226123
Number of terms of the form 2^k in Collatz(3x+1) trajectory of n.
2
1, 2, 5, 3, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 9, 5, 5, 5, 5, 5, 5, 5, 5, 7, 9, 5, 5
OFFSET
1,2
COMMENTS
a(n) = sum(A209229(A070165(n,k)): k=1..A006577(n)). - Reinhard Zumkeller, May 30 2013
LINKS
EXAMPLE
a(3)=5 since Collatz trajectory of 3 contains terms 1,2,4,8 and 16.
MATHEMATICA
coll[n_]:=NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #>1&]; Table[Length[Select[coll[n], IntegerQ[Log[2, #]]&]], {n, 87}]
PROG
(Haskell)
a226123 = sum . map a209229 . a070165_row
-- Reinhard Zumkeller, May 30 2013
CROSSREFS
Cf. A070165.
Sequence in context: A266407 A249273 A078376 * A368658 A216052 A021911
KEYWORD
nonn
AUTHOR
Jayanta Basu, May 27 2013
STATUS
approved