login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225925
G.f.: exp( Sum_{n>=1} A002129(n^2)*x^n/n ), where A002129(n) is the excess of sum of odd divisors of n over sum of even divisors of n.
4
1, 1, -2, 2, -1, -7, 8, -14, 1, 11, -23, 43, -54, 38, 17, -55, 162, -198, 257, -175, 69, 141, -518, 764, -1049, 1215, -1241, 549, 161, -1625, 3192, -5176, 6782, -7568, 7267, -4263, -788, 8394, -17866, 29782, -39041, 46101, -45857, 36551, -14591, -20937, 70638, -129520, 190994, -245846, 280560
OFFSET
0,3
COMMENTS
Compare to: Sum_{n>=0} x^(n*(n+1)/2) = exp( Sum_{n>=1} A002129(n)*x^n/n ).
LINKS
EXAMPLE
G.f.: A(x) = 1 + x - 2*x^2 + 2*x^3 - x^4 - 7*x^5 + 8*x^6 - 14*x^7 + x^8 +...
where
log(A(x)) = x - 5*x^2/2 + 13*x^3/3 - 29*x^4/4 + 31*x^5/5 - 65*x^6/6 + 57*x^7/7 - 125*x^8/8 + 121*x^9/9 - 155*x^10/10 +...+ A002129(n^2)*x^n/n +...
PROG
(PARI) {A002129(n)=if(n<1, 0, -sumdiv(n, d, (-1)^d*d))}
{a(n)=polcoeff(exp(sum(k=1, n, A002129(k^2)*x^k/k)+x*O(x^n)), n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
Cf. A224340, A224339, A002129; variant: A215603.
Sequence in context: A246945 A360377 A100632 * A357553 A246745 A111540
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 20 2013
STATUS
approved