The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225211 Numbers n such that sigma(n+1) - sigma(n) divides n. 1
 2, 3, 4, 7, 8, 20, 26, 31, 127, 532, 954, 2186, 2524, 8191, 104944, 131071, 524287, 918080, 1594322, 10368512, 26100416, 2147483647, 24708617408, 25316030960, 35053995440, 45883878740 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Supersequence of A000668 (Mersenne primes) and A067803 (numbers n such that sigma(n) - sigma(n+1) = n). Corresponding integers k such that sigma(n+1) - sigma(n) = n/k: 2, 1, -4, 1, -4, -2, -13, 1, 1, -1, -1, -1093, -2, 1, .... a(27) > 10^11. - Donovan Johnson, May 04 2013 a(27) > 10^13. - Giovanni Resta, Aug 01 2013 LINKS EXAMPLE Number 2186 is in sequence because sigma(2187) - sigma(2186) = 3280 - 3282 = -2 which divides 2186. MATHEMATICA Select[Range[1000000], DivisorSigma[1, # + 1] - DivisorSigma[1, #] != 0 && IntegerQ[#/(DivisorSigma[1, # + 1] - DivisorSigma[1, #])] &] (* T. D. Noe, May 02 2013 *) Select[Partition[Table[{n, DivisorSigma[1, n]}, {n, 16*10^5}], 2, 1], Divisible[#[[1, 1]], #[[1, 2]]-#[[2, 2]]]&][[All, 1, 1]]//Quiet (* Harvey P. Dale, Jun 27 2020 *) PROG (PARI) is(n)=my(m=sigma(n+1)-sigma(n)); m && n%m==0 \\ Charles R Greathouse IV, May 02 2013 CROSSREFS Cf. A000203, A000668, A067803. Sequence in context: A334020 A006549 A134459 * A159554 A256606 A101128 Adjacent sequences:  A225208 A225209 A225210 * A225212 A225213 A225214 KEYWORD nonn AUTHOR Jaroslav Krizek, May 01 2013 EXTENSIONS a(15)-a(21) from Charles R Greathouse IV, May 02 2013 a(22)-a(26) from Donovan Johnson, May 04 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 07:52 EDT 2021. Contains 343060 sequences. (Running on oeis4.)