login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225209
a(n) = (392*16^n -1620*8^n +1890*4^n -767)/105.
1
1, 249, 8537, 186073, 3427545, 58664153, 970097881, 15776875737, 254486643929, 4088295982297, 65545039643865, 1049779971687641, 16804957869966553, 268947166998693081, 4303697458594972889, 68863501862374868185
OFFSET
1,2
COMMENTS
Starting at n=1, a cube has an edge=2^(n+1)-3. The beginning cube has a value of 1 and is surrounded by 2^n layers of cubes each valued at 2^n. The sum of all cubes with values of 2^n is a(n).
Indices of primes in this sequence: 3, 10, 12, 21, 37, 70, 102, 201, 961, 1854, ....
FORMULA
a(n) = 29*a(n-1) - 252*a(n-2) + 736*a(n-3) - 512*a(n-4).
a(n) = a(n-1) + 7*2^(4*n-1) - 27*2^(3*n-1) + 27*2^(2*n-1), for n>0.
G.f. x*(1 +220*x +1568*x^2 +512*x^3)/( (1-x)*(1-4*x)*(1-8*x)*(1-16*x) ). - R. J. Mathar, May 09 2013
a(n) = a(n-1) +2^(n-1)*(A036563(n+1)^3 -A036563(n)^3). - R. J. Mathar, May 18 2013
EXAMPLE
The first cubes has value 1=a(1). The second cube has 2 layers of cubes each valued at 2 surrounding the cube of value 1 to give (5^3-1)*2+1=249=a(2). Next surround by 2^2 layers of cubes each valued at 2^2: (13^3-5^3)*4+249=8537=a(3). Finally, surround by 2^3 layers of cubes each of value 2^3 to get (29^3-13^3)*8 + 8537 = 186073 = a(4).
MAPLE
seq( (392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105, n=1..20); # G. C. Greubel, Dec 31 2019
MATHEMATICA
LinearRecurrence[{29, -252, 736, -512}, {1, 249, 8537, 186073}, 20] (* Harvey P. Dale, Apr 22 2018 *)
PROG
(PARI) vector(20, n, (392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105) \\ G. C. Greubel, Dec 31 2019
(Magma) [(392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105: n in [1..20]]; // G. C. Greubel, Dec 31 2019
(Sage) [(392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105 for n in (1..20)] # G. C. Greubel, Dec 31 2019
(GAP) List([1..20], n-> (392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105); # G. C. Greubel, Dec 31 2019
CROSSREFS
Sequence in context: A197349 A197400 A371491 * A197363 A069154 A045169
KEYWORD
nonn,easy
AUTHOR
J. M. Bergot, May 01 2013
STATUS
approved