login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225057
Least prime p such that p*6^n +/- 1 are primes.
0
2, 2, 2, 2, 47, 3, 53, 677, 823, 227, 1907, 1103, 17, 163, 2693, 1213, 277, 2767, 887, 8353, 1013, 773, 6967, 1423, 2593, 9643, 157, 18013, 263, 2137, 2837, 107, 3467, 2137, 17, 2777, 1453, 2683, 7963, 3517, 2767, 53527, 8563, 227, 367, 27673, 30853, 5087, 7723, 14753, 41687, 137, 48647, 26357, 16747, 2797, 9887, 35933
OFFSET
1,1
COMMENTS
a(1) >= A064215(n). First n's such that a(n) = A064215(n): 2, 3, 4, 6, 13, 27, 29, 32, 35, 40, 44, 45, 52, 60, 67, 71, 79, 86, 87, 97, 99.
According to Dickson's Conjecture a(n) exists for any n.
MATHEMATICA
Table[ n6=6^n; p = 2; While[ ! PrimeQ[q = p*n6 + 1 ] || ! PrimeQ[ q - 2 ], p = NextPrime[p] ]; p, {n, 100}]
CROSSREFS
Cf. A064215 (least k: k*6^n +/- 1 are primes).
Sequence in context: A289087 A378134 A154288 * A084954 A226281 A217993
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 26 2013
STATUS
approved