The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225058 a(4*n) = n-1. a(2*n+1) = a(4*n+2) = 2*n+1. 1
 -1, 1, 1, 3, 0, 5, 3, 7, 1, 9, 5, 11, 2, 13, 7, 15, 3, 17, 9, 19, 4, 21, 11, 23, 5, 25, 13, 27, 6, 29, 15, 31, 7, 33, 17, 35, 8, 37, 19, 39, 9, 41, 21, 43, 10, 45, 23, 47, 11, 49, 25, 51, 12, 53, 27, 55, 13, 57, 29, 59, 14, 61, 31, 63, 15, 65, 33, 67, 16, 69 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Consider the family of sequences with recurrence a(n) = 2*a(n-4)-a(n-8) where a(0) and a(4) move up in steps of 1. This here is characterized by a(0)=-1, a(4)=0: -2, 1, 1, 3, -1, 5, 3, 7, 0, 9, 5, 11,... -1, 1, 1, 3,  0, 5, 3, 7, 1, 9, 5, 11,...  = a(n) 0,  1, 1, 3,  1, 5, 3, 7, 2, 9, 5, 11,...  = A060819 1,  1, 1, 3,  2, 5, 3, 7, 3, 9, 5, 11,...  = b(n) 2,  1, 1, 3,  3, 5, 3, 7, 4, 9, 5, 11,... . a(n+4)+b(n) = A145979(n). a(n+4)*b(n) = A061037(n+2). a(n+4)-b(n) = repeat -1, 4, 2, 4 with period of length 4. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1). FORMULA a(n) = 2*a(n-4) - a(n-8). a(n+4) - a(n) = A176895(n). G.f.: (-1+x+x^2+3*x^3+3*x^5+x^6+x^7+2*x^4)/((-1+x)^2*(1+x)^2*(x^2+1)^2). - R. J. Mathar, Apr 28 2013 MATHEMATICA a[n_] := 1/16*(11*n-(-1)^n*(5*n+4)-2*(n+4)*Re[I^n]-4); Table[a[n], {n, 0, 47}] (* Jean-François Alcover, Apr 30 2013 *) LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {-1, 1, 1, 3, 0, 5, 3, 7}, 80] (* Harvey P. Dale, Jul 14 2019 *) PROG (PARI) x='x+O('x^50); Vec((-1+x+x^2+3*x^3+3*x^5+x^6+x^7+2*x^4)/((-1+x)^2*(1+x)^2*(x^2+1)^2)) \\ G. C. Greubel, Sep 20 2018 (MAGMA) m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((-1+x+x^2+3*x^3+3*x^5+x^6+x^7+2*x^4)/((-1+x)^2*(1+x)^2*(x^2+1)^2))); // G. C. Greubel, Sep 20 2018 CROSSREFS Sequence in context: A284233 A326990 A037284 * A002123 A276408 A225744 Adjacent sequences:  A225055 A225056 A225057 * A225059 A225060 A225061 KEYWORD sign,easy AUTHOR Paul Curtz, Apr 26 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 05:10 EDT 2021. Contains 345018 sequences. (Running on oeis4.)