The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154288 Numerators of coefficients in expansion of 1/sum(n>=1, x^(n - 1)/(2*n - 1)!! ). 2
 1, -1, 2, -2, -2, 2, 46, -46, 314, 194102, -3229166, -663382, 2836767994, -11441854, -3736651874, 2414923738478, 236418596900006, -6139787306, -28607438174617066, 130216032333763994, -621533718480306419638, -93413975428728344583902, 270176365029669324474442 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 FORMULA G.f.: 1/sum(n>=1, x^(n - 1)/(2*n - 1)!! ) = sqrt(2/Pi) * sqrt(x))/ (exp(x/2) * erf(sqrt(x)/sqrt(2)). EXAMPLE 1/(1 + x/3 + x^2/15 +x^3/105 +x^4/945 +x^5/10395 +...) = 1 -x/3 +2x^2/45 -2x^3/945 -2x^4/14175 +2x^5/93555 +46x^6/638512875 -46x^7/273648375 + ... MATHEMATICA q[x_] = (Sqrt[2/Pi]*Sqrt[x])/ (E^(x/2)*Erf[Sqrt[x]/Sqrt[2]]) ; Numerator[CoefficientList[Series[q[x], {x, 0, 30}], x]] PROG (PARI) lista(n) = { n++; x = z + z*O(z^n); P = 1/sum(m=1, n, (x^(m - 1)/prod(k=1, m, 2*k-1))); n--; for (i=0, n, print1(numerator(polcoeff(P, i, z)), ", " ); ); } \\ Michel Marcus, Oct 03 2013 (Sage) def A154288_list(len):     R, C = [1], [1]+[0]*(len-1)     for n in (1..len-1):         for k in range(n, 0, -1):             C[k] = C[k-1] / (2*k+1)         C[0] = -sum(C[k] for k in (1..n))         R.append(C[0].numerator())     return R print(A154288_list(23)) # Peter Luschny, Feb 21 2016 CROSSREFS Cf. A154289 (denominators). Sequence in context: A286851 A320017 A289087 * A225057 A084954 A226281 Adjacent sequences:  A154285 A154286 A154287 * A154289 A154290 A154291 KEYWORD sign,frac AUTHOR Roger L. Bagula, Jan 06 2009 EXTENSIONS Edited by Michel Marcus, Oct 03 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 4 21:17 EDT 2020. Contains 333229 sequences. (Running on oeis4.)