login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224895 Let p = prime(n). Smallest odd number m > p such that m + p is semiprime. 1
7, 7, 9, 15, 15, 21, 21, 27, 35, 33, 43, 45, 45, 51, 59, 65, 63, 73, 75, 75, 85, 87, 95, 105, 105, 105, 111, 111, 117, 141, 135, 143, 141, 159, 153, 163, 169, 171, 179, 185, 183, 201, 195, 201, 201, 223, 235, 231, 231, 237, 245, 243, 261, 263, 269, 275, 273 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Apparently a(n) = A210497(n) for n>1, which basically indicates that the search for the smallest even semiprime larger than 2*prime(n) produces 2*prime(n+1). - R. J. Mathar, Jul 27 2013
a(n) <= A165138(n); a(n) = A165138(n) when a(n) is prime, corresponding n's: 1, 2, 11, 15, 18, 36, 39, 46, 54, 55, 58, 73, 91,.. .
Also of interest is that sequence in not monotonic: e.g., a(10) - a(9) = 33 - 35 = -2, a(31) - a(30) = 135 - 141 = -6.
LINKS
EXAMPLE
2 + 7 = 9 = 3*3, 3 + 7 = 10 = 2*5, 5 + 9 = 14 = 2*7.
MAPLE
A224895 := proc(n)
local p, m ;
p := ithprime(n) ;
for m from p+1 do
if type(m, 'odd') and numtheory[bigomega](m+p) = 2 then
return m ;
end if;
end do:
end proc: # R. J. Mathar, Jul 28 2013
MATHEMATICA
Reap[Sow[7]; Do[p=Prime[n]; k=p+2; While[!PrimeQ[r=(p+k)/2], k=k+2]; Sow[k], {n, 2, 100}]][[2, 1]]
son[n_]:=Module[{m=If[EvenQ[n], n+1, n+2]}, While[PrimeOmega[n+m]!=2, m = m+2]; m]; Table[son[n], {n, Prime[Range[60]]}] (* Harvey P. Dale, Apr 24 2017 *)
CROSSREFS
Sequence in context: A267040 A225961 A099290 * A103569 A306530 A094460
KEYWORD
nonn
AUTHOR
Zak Seidov, Jul 24 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 16:59 EDT 2024. Contains 371635 sequences. (Running on oeis4.)