login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224895
Let p = prime(n). Smallest odd number m > p such that m + p is semiprime.
1
7, 7, 9, 15, 15, 21, 21, 27, 35, 33, 43, 45, 45, 51, 59, 65, 63, 73, 75, 75, 85, 87, 95, 105, 105, 105, 111, 111, 117, 141, 135, 143, 141, 159, 153, 163, 169, 171, 179, 185, 183, 201, 195, 201, 201, 223, 235, 231, 231, 237, 245, 243, 261, 263, 269, 275, 273
OFFSET
1,1
COMMENTS
Apparently a(n) = A210497(n) for n>1, which basically indicates that the search for the smallest even semiprime larger than 2*prime(n) produces 2*prime(n+1). - R. J. Mathar, Jul 27 2013
a(n) <= A165138(n); a(n) = A165138(n) when a(n) is prime, corresponding n's: 1, 2, 11, 15, 18, 36, 39, 46, 54, 55, 58, 73, 91,.. .
Also of interest is that sequence in not monotonic: e.g., a(10) - a(9) = 33 - 35 = -2, a(31) - a(30) = 135 - 141 = -6.
EXAMPLE
2 + 7 = 9 = 3*3, 3 + 7 = 10 = 2*5, 5 + 9 = 14 = 2*7.
MAPLE
A224895 := proc(n)
local p, m ;
p := ithprime(n) ;
for m from p+1 do
if type(m, 'odd') and numtheory[bigomega](m+p) = 2 then
return m ;
end if;
end do:
end proc: # R. J. Mathar, Jul 28 2013
MATHEMATICA
Reap[Sow[7]; Do[p=Prime[n]; k=p+2; While[!PrimeQ[r=(p+k)/2], k=k+2]; Sow[k], {n, 2, 100}]][[2, 1]]
son[n_]:=Module[{m=If[EvenQ[n], n+1, n+2]}, While[PrimeOmega[n+m]!=2, m = m+2]; m]; Table[son[n], {n, Prime[Range[60]]}] (* Harvey P. Dale, Apr 24 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jul 24 2013
STATUS
approved