login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211280
Numerator of prime(n+1) - prime(n)/2.
2
2, 7, 9, 15, 15, 21, 21, 27, 35, 33, 43, 45, 45, 51, 59, 65, 63, 73, 75, 75, 85, 87, 95, 105, 105, 105, 111, 111, 117, 141, 135, 143, 141, 159, 153, 163, 169, 171, 179, 185, 183, 201, 195, 201, 201, 223, 235, 231, 231, 237, 245, 243, 261, 263, 269, 275, 273, 283, 285, 285, 303, 321, 315, 315, 321, 345, 343, 357, 351, 357, 365, 375, 379
OFFSET
1,1
COMMENTS
Second row of the inverse semi-binomial transform of A000040(n+1) as introduced in A213268.
The list of denominators is 1, 2, 2, ... (2 repeated), so a(n) = A210497(n) for n>1.
a(n) - prime(n) = 2*prime(n+1)-prime(n)-prime(n) are prime differences (A001223) multiplied by 2, and therefore multiples of 4.
FORMULA
a(n) ~ n log n. Apart from the first term, a(n) = 2*prime(n+1) - prime(n). - Charles R Greathouse IV, Jul 10 2012
a(n) = prime(n+2) - A036263(n), n>1. - R. J. Mathar, Jul 10 2012
MAPLE
A211280 := proc(n)
ithprime(n+1)-ithprime(n)/2 ;
numer(%) ;
end proc: # R. J. Mathar, Jul 10 2012
MATHEMATICA
Numerator[#[[2]]-#[[1]]/2]&/@Partition[Prime[Range[80]], 2, 1] (* Harvey P. Dale, Mar 05 2023 *)
CROSSREFS
Denominators are A040000.
Sequence in context: A102994 A226824 A168132 * A294863 A085544 A154789
KEYWORD
nonn,easy,frac
AUTHOR
Paul Curtz, Jul 05 2012
STATUS
approved