login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224686
Number of (n+4) X 8 0..1 matrices with each 5 X 5 subblock idempotent.
1
3465, 1720, 1896, 2166, 2429, 2646, 3214, 4122, 5307, 6699, 8253, 10313, 13224, 17256, 22621, 29474, 38326, 50021, 65685, 86644, 114391, 150918, 199073, 262818, 347453, 459759, 608521, 805360, 1065871, 1410937, 1868234, 2474211, 3276950
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - 2*a(n-6) + 2*a(n-8) - a(n-9) for n>13.
Empirical g.f.: x*(3465 - 8675*x + 3666*x^2 + 6848*x^3 - 7232*x^4 - 1677*x^5 + 5708*x^6 + 1572*x^7 - 5764*x^8 + 1869*x^9 + 158*x^10 + 56*x^11 + 4*x^12) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 - x^2 - x^3)). - Colin Barker, Sep 03 2018
EXAMPLE
Some solutions for n=2:
..1..1..1..1..0..0..0..0....1..0..0..0..0..0..0..0....1..0..0..0..0..0..0..1
..0..0..0..0..0..0..0..0....1..0..0..0..0..0..0..0....1..0..0..0..0..0..0..0
..0..0..0..0..0..0..1..0....0..0..0..0..0..1..0..0....0..0..0..0..0..0..0..1
..0..0..0..0..0..0..1..0....1..0..0..0..0..1..0..0....1..0..0..0..0..0..0..1
..0..0..0..0..0..0..1..0....1..0..0..0..0..1..0..0....0..0..0..0..0..0..0..1
..0..0..0..0..0..0..1..0....1..0..0..0..0..1..0..0....0..0..0..0..0..0..0..1
CROSSREFS
Column 4 of A224690.
Sequence in context: A235586 A252967 A252959 * A125017 A307111 A307098
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 15 2013
STATUS
approved