login
A252967
Number of (6+2)X(n+2) 0..4 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order
1
3461, 1186, 1681, 2201, 3315, 5100, 6855, 10888, 16745, 24270, 38635, 61564, 92665, 151163, 244971, 384029, 637145, 1047568, 1703415, 2841480, 4783985, 7873606, 13425939, 22559724, 38253177, 64736779, 111363563, 187737521, 324817225
OFFSET
1,1
COMMENTS
Row 6 of A252961
LINKS
FORMULA
Empirical: a(n) = a(n-1) +6*a(n-2) -a(n-3) -15*a(n-4) -20*a(n-5) +26*a(n-6) +54*a(n-7) -12*a(n-8) -48*a(n-9) -48*a(n-10) +48*a(n-11) +25*a(n-12) -25*a(n-13) +22*a(n-14) -27*a(n-15) +27*a(n-16) -12*a(n-17) +18*a(n-18) -18*a(n-19) for n>21
EXAMPLE
Some solutions for n=2
..0..0..1..0....0..1..1..2....0..1..0..0....0..1..1..2....0..0..1..0
..1..0..0..2....3..3..4..4....2..2..1..1....2..3..3..4....2..1..1..3
..3..0..3..3....4..0..0..1....3..3..2..2....4..0..0..1....1..2..1..1
..0..0..1..0....1..1..3..3....0..0..3..3....1..2..2..0....4..4..1..4
..1..0..0..1....3..4..4..0....4..4..0..0....3..4..4..2....3..1..1..2
..2..0..2..2....2..2..1..1....2..2..4..4....0..1..1..4....1..3..1..1
..0..0..1..0....0..3..3..4....1..1..2..1....2..3..3..1....0..0..1..0
..4..0..0..1....4..4..2..2....0..0..1..0....4..0..0..3....4..1..1..3
CROSSREFS
Sequence in context: A235835 A235830 A235586 * A252959 A224686 A125017
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 25 2014
STATUS
approved