login
A252966
Number of (5+2)X(n+2) 0..4 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order
1
1543, 596, 871, 1242, 1747, 2822, 4019, 6133, 9681, 14784, 22631, 37118, 57117, 91896, 149133, 240834, 387535, 649425, 1050067, 1754302, 2910669, 4884522, 8103169, 13839304, 23049703, 39413912, 66414125, 113933293, 192261463
OFFSET
1,1
COMMENTS
Row 5 of A252961
LINKS
FORMULA
Empirical: a(n) = a(n-1) +6*a(n-2) -a(n-3) -15*a(n-4) -20*a(n-5) +26*a(n-6) +54*a(n-7) -12*a(n-8) -48*a(n-9) -47*a(n-10) +47*a(n-11) +22*a(n-12) -27*a(n-13) +27*a(n-14) -12*a(n-15) +18*a(n-16) -18*a(n-17) for n>19
EXAMPLE
Some solutions for n=2
..0..1..0..0....0..0..1..1....0..0..1..0....0..1..1..2....0..1..1..2
..2..2..0..2....2..2..0..0....0..2..2..0....2..2..3..3....3..3..4..4
..1..0..0..1....3..3..2..2....0..3..0..0....4..0..0..1....4..0..0..1
..0..1..0..0....1..1..3..3....0..0..3..0....1..1..2..2....1..1..3..3
..2..2..0..2....0..0..1..1....0..2..2..0....3..4..4..0....3..4..4..0
..3..0..0..1....4..4..0..4....0..4..0..0....0..0..1..1....0..0..1..1
..0..3..0..0....2..2..4..2....0..0..4..0....1..3..3..4....2..3..3..4
CROSSREFS
Sequence in context: A083734 A375490 A137598 * A133560 A232102 A234031
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 25 2014
STATUS
approved