login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224690
T(n,k)=Number of (n+4)X(k+4) 0..1 matrices with each 5X5 subblock idempotent
9
5682, 2351, 2351, 2662, 1312, 2662, 3465, 1494, 1494, 3465, 4405, 1720, 1636, 1720, 4405, 5385, 1938, 1896, 1896, 1938, 5385, 6713, 2110, 2136, 2166, 2136, 2110, 6713, 8897, 2591, 2354, 2429, 2429, 2354, 2591, 8897, 12393, 3332, 2862, 2646, 2700, 2646
OFFSET
1,1
COMMENTS
Table starts
..5682.2351.2662.3465.4405.5385.6713..8897.12393.17893.25853.36869.52253.74230
..2351.1312.1494.1720.1938.2110.2591..3332..4377..5599..6968..8749.11314.14818
..2662.1494.1636.1896.2136.2354.2862..3701..4814..6134..7579..9522.12249.16025
..3465.1720.1896.2166.2429.2646.3214..4122..5307..6699..8253.10313.13224.17256
..4405.1938.2136.2429.2700.2926.3540..4514..5773..7247..8885.11074.14173.18466
..5385.2110.2354.2646.2926.3158.3819..4858..6192..7747..9470.11789.15081.19640
..6713.2591.2862.3214.3540.3819.4572..5723..7181..8868.10729.13235.16781.21671
..8897.3332.3701.4122.4514.4858.5723..7006..8608.10447.12466.15181.19005.24252
.12393.4377.4814.5307.5773.6192.7181..8608.10366.12369.14558.17496.21614.27236
.17893.5599.6134.6699.7247.7747.8868.10447.12369.14544.16911.20082.24506.30517
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +2*a(n-5) -a(n-7) -a(n-9) +a(n-10) -a(n-11) +a(n-12) for n>18
k=2: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) -a(n-7) +a(n-8) -a(n-9) +a(n-10) +a(n-12) -a(n-13) for n>18
k=3: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) -a(n-7) +a(n-8) -a(n-9) +a(n-10) +a(n-12) -a(n-13) for n>17
k=4: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -2*a(n-6) +2*a(n-8) -a(n-9) for n>13
k=5..12+: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +a(n-5) -3*a(n-6) +3*a(n-7) -a(n-8) for n>12
EXAMPLE
Some solutions for n=2 k=4
..1..0..0..0..0..0..0..0....1..0..0..0..0..0..0..1....0..0..0..0..0..0..0..0
..1..0..0..0..0..0..0..0....1..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0
..1..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0....0..1..1..1..1..1..0..0
..0..0..0..0..0..0..0..0....1..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..1....1..0..0..0..0..0..0..1....0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..1
CROSSREFS
Sequence in context: A242946 A151770 A224682 * A224683 A222824 A183638
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Apr 15 2013
STATUS
approved