login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224685
Number of (n+4) X 7 0..1 matrices with each 5 X 5 subblock idempotent.
1
2662, 1494, 1636, 1896, 2136, 2354, 2862, 3701, 4814, 6134, 7579, 9522, 12249, 16025, 21050, 27502, 35816, 46815, 61511, 81188, 107258, 141592, 186820, 246722, 326234, 431740, 571497, 756452, 1001216, 1325438, 1755075, 2324413, 3078635, 4077559
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) - a(n-7) + a(n-8) -a(n-9) + a(n-10) + a(n-12) - a(n-13) for n>17.
Empirical g.f.: x*(2662 - 3830*x + 1310*x^2 - 2544*x^3 + 1148*x^4 - 164*x^5 + 30*x^6 + 2753*x^7 - 1112*x^8 + 2503*x^9 - 1622*x^10 - 233*x^11 - 2720*x^12 + 1520*x^13 + 221*x^14 + 61*x^15 + 5*x^16) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 - x^3)). - Colin Barker, Sep 02 2018
EXAMPLE
Some solutions for n=2:
..1..0..0..0..0..0..0....1..0..0..0..0..0..1....1..1..0..0..0..0..0
..1..0..0..0..0..0..0....1..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..0..0..0..0..0....1..0..0..0..0..0..0....0..0..1..1..1..0..0
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..1..0..0..0..0..0..0....1..0..0..0..0..0..1....0..0..0..0..0..0..0
..0..1..0..0..1..1..1....0..0..0..0..0..0..1....0..0..1..1..1..0..0
CROSSREFS
Column 3 of A224690.
Sequence in context: A235733 A235514 A197108 * A167191 A002482 A187293
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 15 2013
STATUS
approved