login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224681
G.f.: exp( Sum_{n>=1} A224678(n^2) * x^n/n ).
1
1, 1, 3, 19, 300, 11768, 1193594, 302611474, 188884066846, 288112683033594, 1069431906358800731, 9633610233639395592895, 210208585613243673600527636, 11095213297186302234251136888284, 1415095855034367649056280021793496073, 435753686684779400844511781608578944222819
OFFSET
0,3
COMMENTS
A224678 is the logarithmic derivative of A023361, where A023361(n) = number of compositions of n into positive triangular numbers.
FORMULA
Logarithmic derivative yields A224680.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 300*x^4 + 11768*x^5 + 1193594*x^6 +...
where
log(A(x)) = x + 5*x^2/2 + 49*x^3/3 + 1117*x^4/4 + 57181*x^5/5 + 7086833*x^6/6 +...+ A224678(n^2)*x^n/n +...
PROG
(PARI) {A224678(n)=n*polcoeff(-log(1-sum(r=1, sqrtint(2*n+1), x^(r*(r+1)/2)+x*O(x^n))), n)}
{a(n)=polcoeff(exp(sum(m=1, n, A224678(m^2)*x^m/m)+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 14 2013
STATUS
approved