login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224679 Number of compositions of n^2 into sums of positive triangular numbers. 4
1, 1, 3, 25, 546, 28136, 3487153, 1038115443, 742336894991, 1275079195875471, 5260826667789867957, 52137661179700350278531, 1241165848412448464485760897, 70972288312605764017275784402928, 9748291749334923037419108242002717050 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = A023361(n^2), where A023361(n) = number of compositions of n into positive triangular numbers.
a(n) = [x^(n^2)] 1/(1 - Sum_{k>=1} x^(k*(k+1)/2)).
MAPLE
b:= proc(n) option remember; local i; if n=0 then 1 else 0;
for i while i*(i+1)/2<=n do %+b(n-i*(i+1)/2) od; % fi
end:
a:= n-> b(n^2):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 05 2018
MATHEMATICA
b[n_] := b[n] = Module[{i, j = If[n == 0, 1, 0]}, For[i = 1, i(i+1)/2 <= n, i++, j += b[n-i(i+1)/2]]; j];
a[n_] := b[n^2];
a /@ Range[0, 20] (* Jean-François Alcover, Nov 04 2020, after Alois P. Heinz *)
PROG
(PARI) {a(n)=polcoeff(1/(1-sum(r=1, n+1, x^(r*(r+1)/2)+x*O(x^(n^2)))), n^2)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A243440 A306783 A003024 * A213599 A179473 A248417
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 14 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 16:44 EST 2023. Contains 367563 sequences. (Running on oeis4.)