The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243440 O.g.f.: exp( Integral Sum_{n>=1} n! * n^(n-1) * x^(n-1) / Product_{k=1..n} (1 - k*x) dx ). 1
 1, 1, 3, 25, 499, 18897, 1158175, 104287909, 12948389505, 2119204222647, 442024984454145, 114447363118335099, 36014003359662761889, 13536516384259740525435, 5989775500211255393302197, 3082008257212085146469317911, 1824650971940959528920159955650, 1231558332755627626667173051846452 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..17. EXAMPLE G.f.: A(x) = 1 + x + 3*x^2 + 25*x^3 + 499*x^4 + 18897*x^5 + 1158175*x^6 +... The logarithmic derivative equals the series: A'(x)/A(x) = 1/(1-x) + 2!*2*x/((1-x)*(1-2*x)) + 3!*3^2*x^2/((1-x)*(1-2*x)*(1-3*x)) + 4!*4^3*x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) + 5!*5^4*x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) +... Explicitly, the logarithm of the o.g.f. begins: log(A(x)) = x + 5*x^2/2 + 67*x^3/3 + 1889*x^4/4 + 91771*x^5/5 + 6828545*x^6/6 + 721578187*x^7/7 + 102730470449*x^8/8 +... PROG (PARI) {a(n)=polcoeff(exp(intformal(sum(m=1, n+1, m!*m^(m-1)*x^(m-1)/prod(k=1, m, 1-k*x+x*O(x^n))))), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A084784, A243435. Sequence in context: A272482 A356404 A136173 * A306783 A003024 A224679 Adjacent sequences: A243437 A243438 A243439 * A243441 A243442 A243443 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 03:32 EST 2023. Contains 367468 sequences. (Running on oeis4.)