login
A224417
Least prime p such that sum_{k=0}^n B_k*x^{n-k} is irreducible modulo p, where B_k refers to the Bell number A000110(k).
6
2, 3, 2, 11, 3, 2, 193, 113, 2, 29, 71, 167, 19, 3, 7, 13, 199, 5, 101, 59, 13, 41, 3, 359, 7, 11, 2, 31, 197, 139, 3, 59, 2, 139, 83, 37, 23, 193, 587, 199, 67, 47, 401, 41, 571, 73, 1063, 229, 1163, 47, 53, 239, 347, 223, 577, 499, 271, 269, 11, 179
OFFSET
1,1
COMMENTS
Conjecture: a(n) < 4n^2-1 for all n>0.
LINKS
EXAMPLE
a(5) = 3 since the polynomial sum_{k=0}^5 B_5*x^{5-k} = x^5+x^4+2*x^3+5*x^2+15*x+52 is irreducible modulo 3 but reducible modulo 2.
Note also that a(7) = 193 < 4*7^2-1 = 195.
MATHEMATICA
A[n_, x_]:=A[n, x]=Sum[BellB[k]*x^(n-k), {k, 0, n}]
Do[Do[If[IrreduciblePolynomialQ[A[n, x], Modulus->Prime[k]]==True, Print[n, " ", Prime[k]]; Goto[aa]], {k, 1, PrimePi[4n^2-2]}];
Print[n, " ", counterexample]; Label[aa]; Continue, {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 06 2013
STATUS
approved