login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224210
Least prime p such that sum_{k=0}^n (k+1)^2*x^{n-k} is irreducible modulo p.
8
2, 11, 7, 17, 11, 3, 7, 97, 3, 89, 31, 113, 43, 7, 23, 23, 17, 67, 23, 109, 17, 277, 103, 283, 59, 101, 157, 127, 29, 79, 23, 223, 73, 269, 433, 137, 5, 659, 109, 401, 419, 7, 373, 131, 89, 269, 149, 61, 829, 881
OFFSET
1,1
COMMENTS
Conjecture: a(n) does not exceed the (4n-3)-th prime for each n>0. Moreover, for any integers m>1 and n>0 the polynomial sum_{k=0}^n (k+1)^m*x^{n-k} is irreducible modulo some prime, and its Galois group over the rationals is isomorphic to the symmetric group S_n. Also, for m,n=2,3,... there are infinitely many integers b > n^m such that [n^m,...,2^m,1^m] in base b is prime.
We have a similar conjecture with the above (k+1)^m replaced by (2k+1)^m.
LINKS
EXAMPLE
a(3) = 7 since f(x) = x^3+4x^2+9x+16 is irreducible modulo 7 but reducible modulo any of 2, 3, 5. Note that
f(x)==x*(x-1)^2 (mod 2), f(x)==(x-1)*(x^2-x-1) (mod 3)
and
f(x)==(x+1)*(x-1)^2 (mod 5).
MATHEMATICA
A[n_, x_]:=Sum[(k+1)^2*x^(n-k), {k, 0, n}]
Do[Do[If[IrreduciblePolynomialQ[A[n, x], Modulus->Prime[k]]==True, Print[n, " ", Prime[k]]; Goto[aa]], {k, 1, Prime[4n-3]}];
Print[n, " ", counterexample]; Label[aa]; Continue, {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 01 2013
STATUS
approved