The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224211 Irregular triangular array read by rows. T(n,k) is the number of n-permutations with exactly k distinct cycle lengths; n>=1, 1<=k<=floor( (-1+(1+8n)^(1/2))/2 ). 1
 1, 1, 2, 3, 6, 8, 24, 50, 120, 234, 120, 720, 1764, 630, 5040, 11808, 7392, 40320, 109584, 69552, 362880, 954000, 763200, 151200, 3628800, 10628640, 8165520, 1330560, 39916800, 113891040, 109010880, 25280640, 479001600, 1486442880, 1345687200, 381775680, 6227020800, 18913184640, 19773804960, 6763236480, 87178291200, 283465647360, 291950568000, 102508005600, 10897286400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row sums = A007838. LINKS Alois P. Heinz, Rows n = 1..300, flattened FORMULA E.g.f.: Product_{i>=1} (1 + y*x)^i/i. EXAMPLE : 1; : 1; : 2, 3; : 6, 8; : 24, 50; : 120, 234, 120; : 720, 1764, 630; : 5040, 11808, 7392; : 40320, 109584, 69552; : 362880, 954000, 763200, 151200; MAPLE b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+ (i-1)!*b(n-i, i-1)* `if`(i>n, 0, binomial(n, i)*x)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n\$2)): seq(T(n), n=1..15); # Alois P. Heinz, Oct 21 2015 MATHEMATICA nn=15; f[list_]:=Select[list, #>0&]; Map[f, Drop[Range[0, nn]!CoefficientList[Series[Product[(1+y x^i/i), {i, 1, nn}], {x, 0, nn}], {x, y}], 1]]//Grid CROSSREFS Sequence in context: A093705 A281645 A351853 * A187026 A179221 A350119 Adjacent sequences: A224208 A224209 A224210 * A224212 A224213 A224214 KEYWORD nonn,tabf AUTHOR Geoffrey Critzer, Apr 01 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 00:50 EDT 2023. Contains 361511 sequences. (Running on oeis4.)